Poisson cylinders in hyperbolic space

被引:2
作者
Broman, Erik [1 ]
Tykesson, Johan [2 ,3 ]
机构
[1] Uppsala Univ, Dept Math, S-75105 Uppsala, Sweden
[2] Chalmers Univ Technol, Dept Math, Div Math Stat, Gothenburg, Sweden
[3] Gothenburg Univ, S-41124 Gothenburg, Sweden
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2015年 / 20卷
基金
瑞典研究理事会;
关键词
Poisson cylinders; hyperbolic space; continuum percolation; RANDOM INTERLACEMENTS; PERCOLATION; PLANE;
D O I
10.1214/EJP.v20-3645
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Poisson cylinder model in d-dimensional hyperbolic space. We show that in contrast to the Euclidean case, there is a phase transition in the connectivity of the collection of cylinders as the intensity parameter varies. We also show that for any non-trivial intensity, the diameter of the collection of cylinders is infinite.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 17 条
  • [1] Ahlfors Lars V., 1981, ORDWAY PROFESSORSHIP
  • [2] Beardon Alan F., 1983, GRADUATE TEXTS MATH, V91
  • [3] Percolation in the hyperbolic plane
    Benjamini, I
    Schramm, O
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 487 - 507
  • [4] Benjamini I, 2009, ALEA-LAT AM J PROBAB, V6, P323
  • [5] The critical probability for random Voronoi percolation in the plane is 1/2
    Bollobas, Bela
    Riordan, Oliver
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (03) : 417 - 468
  • [6] Broman Erik, ANN I H POI IN PRESS
  • [7] Cannon James W., 1997, Flav Geom., V31, P2
  • [8] Grimmett G. R., 1999, Percolation, V2nd ed.
  • [9] Uniqueness and non-uniqueness in percolation theory
    Haggstrom, Olle
    Jonasson, Johan
    [J]. PROBABILITY SURVEYS, 2006, 3 : 289 - 344
  • [10] Li S., 2011, Asian Journal of Mathematics and Statistics, V4, P66