On joint identification of the feedback parameters for hyperchaotic systems: An optimization-based approach

被引:12
作者
Li, Nianqiang [1 ]
Pan, Wei [1 ]
Yan, Lianshan [1 ]
Luo, Bin [1 ]
Xu, Mingfeng [1 ]
Jiang, Ning [1 ]
Tang, Yilong [1 ]
机构
[1] SW Jiaotong Univ, Ctr Informat Photon & Commun, Chengdu 610031, Sichuan, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
CHAOTIC OPTICAL COMMUNICATIONS; HIGH BIT RATES; TIME-SERIES; SEMICONDUCTOR-LASERS; SYMBOLIC DYNAMICS; MUTUAL INFORMATION; SYNCHRONIZATION; ALGORITHM; COMMUNICATION; SWARM;
D O I
10.1016/j.chaos.2011.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose an optimization-based scheme for parameter estimation in high-dimensional chaotic systems, and the symbolic time series analysis (STSA) based method is adopted to address the estimation problem. It is shown that, when the system structure and the corresponding time series are known, the STSA-based method works better with respect to the autocorrelation function (ACF) and the mutual information (MI) technologies. Most importantly, the time delay and the feedback strength of two test systems, i.e., the Mackey-Glass system and an external-cavity semiconductor laser system, can be successfully identified using the proposed scheme. To explore the noise immunity, the influence of certain levels of noise on the STSA-based method is tested. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 47 条
  • [1] Cryptanalysis of an ergodic chaotic cipher
    Alvarez, G
    Montoya, F
    Romera, M
    Pastor, G
    [J]. PHYSICS LETTERS A, 2003, 311 (2-3) : 172 - 179
  • [2] [Anonymous], 1998, Applied Symbolic Dynamics and Chaos
  • [3] Chaos-based communications at high bit rates using commercial fibre-optic links
    Argyris, A
    Syvridis, D
    Larger, L
    Annovazzi-Lodi, V
    Colet, P
    Fischer, I
    García-Ojalvo, J
    Mirasso, CR
    Pesquera, L
    Shore, KA
    [J]. NATURE, 2005, 438 (7066) : 343 - 346
  • [4] What symbolic dynamics do we get with a misplaced partition? On the validity of threshold crossings analysis of chaotic time-series
    Bollt, EM
    Stanford, T
    Lai, YC
    Zyczkowski, K
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2001, 154 (3-4) : 259 - 286
  • [5] RECONSTRUCTING EQUATIONS OF MOTION FROM EXPERIMENTAL-DATA WITH UNOBSERVED VARIABLES
    BREEDEN, JL
    HUBLER, A
    [J]. PHYSICAL REVIEW A, 1990, 42 (10): : 5817 - 5826
  • [6] Estimation of delay times from a delayed optical feedback laser experiment
    Bunner, MJ
    Kittel, A
    Parisi, J
    Fischer, I
    Elsasser, W
    [J]. EUROPHYSICS LETTERS, 1998, 42 (04): : 353 - 358
  • [7] Parameter identification of Rossler's chaotic system by an evolutionary algorithm
    Chang, Wei-Der
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 29 (05) : 1047 - 1053
  • [8] Crutchfield J. P., 1987, Complex Systems, V1, P417
  • [9] SYMBOLIC DYNAMICS OF NOISY CHAOS
    CRUTCHFIELD, JP
    PACKARD, NH
    [J]. PHYSICA D, 1983, 7 (1-3): : 201 - 223
  • [10] An approach of parameter estimation for a chaotic system based on genetic algorithm
    Dai, D
    Ma, XK
    Li, FC
    You, Y
    [J]. ACTA PHYSICA SINICA, 2002, 51 (11) : 2459 - 2462