Exploratory analysis of multivariate data: Applications of parallel coordinates in ecology

被引:6
作者
Alminagorta, Omar [1 ,2 ]
Loewen, Charlie J. G. [1 ]
de Kerckhove, Derrick T. [1 ,3 ]
Jackson, Donald A. [1 ]
Chu, Cindy [1 ,3 ]
机构
[1] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada
[2] Dept Planning & Engn, Aurora, CO USA
[3] Minist Northern Dev Mines Nat Resources & Forestr, Peterborough, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Ecological indicators; Exploratory data analysis; Science communications; Visualization tool; Water quality; Zebra mussels; MUSSEL DREISSENA-POLYMORPHA; ZEBRA MUSSEL; BIG-DATA; MULTIPLE STRESSORS; CHALLENGES; ECOSYSTEMS; ONTARIO; RIVER;
D O I
10.1016/j.ecoinf.2021.101361
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Exploratory analysis of biological communities and their environmental factors requires specialized tools to identify associations among variables and generate hypotheses about their causal relationships. Despite the ubiquity of multivariate data in ecology, the visualization and interpretation of such data can be challenging. This study introduces the application of parallel coordinates to ecologists, illustrating the utility of this tool to visualize and explore different types of multivariate data. We demonstrate this tool with two case studies in Canada to (i) explore water-quality associations with benthic macroinvertebrate indicators of stream condition in the St. Lawrence drainage basin, and (ii) identify environmental conditions that contribute to invasive zebra mussel (Dreissena polymorpha) proliferation across inland lakes of Ontario. We offer a novel demonstration of how parallel coordinates provide a practical alternative to current tools in the ecologist's toolbox for visualizing and exploring multivariate data, identifying hypotheses about causal relationships, and communicating science via interactive, web-based applications.
引用
收藏
页数:9
相关论文
共 51 条
  • [1] Alminagorta O., 2015, SYSTEMS OPTIMIZATION
  • [2] [Anonymous], 2013, EUROGRAPHICS STATE A, DOI [10.2312/conf/EG2013/stars/095-116, DOI 10.2312/CONF/EG2013/STARS/095-116]
  • [3] Bengfort B., 2020, YELLOWBRICK V11
  • [4] Forward selection of explanatory variables
    Blanchet, F. Guillaume
    Legendre, Pierre
    Borcard, Daniel
    [J]. ECOLOGY, 2008, 89 (09) : 2623 - 2632
  • [5] D3: Data-Driven Documents
    Bostock, Michael
    Ogievetsky, Vadim
    Heer, Jeffrey
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 2301 - 2309
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Chang Kai., 2019, Parallel coordinates
  • [8] Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
    Chen, C. L. Philip
    Zhang, Chun-Yang
    [J]. INFORMATION SCIENCES, 2014, 275 : 314 - 347
  • [9] USE OF FACES TO REPRESENT POINTS IN K-DIMENSIONAL SPACE GRAPHICALLY
    CHERNOFF, H
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (342) : 361 - 368
  • [10] Fast detection and visualization of network attacks on parallel coordinates
    Choi, Hyunsang
    Lee, Heejo
    Kim, Hyogon
    [J]. COMPUTERS & SECURITY, 2009, 28 (05) : 276 - 288