Distribution and Functions of Monodehydroascorbate Reductases in Plants: Comprehensive Reverse Genetic Analysis of Arabidopsis thaliana Enzymes

被引:23
作者
Tanaka, Mio [1 ,2 ]
Takahashi, Ryuki [2 ]
Hamada, Akane [1 ,2 ]
Terai, Yusuke [2 ]
Ogawa, Takahisa [1 ,2 ,3 ]
Sawa, Yoshihiro [2 ]
Ishikawa, Takahiro [1 ,2 ,3 ]
Maruta, Takanori [1 ,2 ,3 ]
机构
[1] Shimane Univ, Grad Sch Nat Sci & Technol, 1060 Nishikawatsu, Matsue, Shimane 6908504, Japan
[2] Shimane Univ, Fac Life & Environm Sci, Dept Life Sci & Biotechnol, 1060 Nishikawatsu, Matsue, Shimane 6908504, Japan
[3] Shimane Univ, Acad Assembly, Inst Agr & Life Sci, 1060 Nishikawatsu, Matsue, Shimane 6908504, Japan
关键词
ascorbate recycling; monodehydroascorbate reductase; dehydroascorbate reductase; light stress; Arabidopsis thaliana; DEHYDROASCORBATE REDUCTASE; ASCORBATE PEROXIDASE; OXIDATIVE STRESS; MOLECULAR CHARACTERIZATION; ENVIRONMENTAL-STRESS; PROTEOME ANALYSIS; LEAF PEROXISOMES; PHOTOSYSTEM-I; HIGH LIGHT; CHLOROPLASTS;
D O I
10.3390/antiox10111726
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Monodehydroascorbate reductase (MDAR) is an enzyme involved in ascorbate recycling. Arabidopsis thaliana has five MDAR genes that encode two cytosolic, one cytosolic/peroxisomal, one peroxisomal membrane-attached, and one chloroplastic/mitochondrial isoform. In contrast, tomato plants possess only three enzymes, lacking the cytosol-specific enzymes. Thus, the number and distribution of MDAR isoforms differ according to plant species. Moreover, the physiological significance of MDARs remains poorly understood. In this study, we classify plant MDARs into three classes: class I, chloroplastic/mitochondrial enzymes; class II, peroxisomal membrane-attached enzymes; and class III, cytosolic/peroxisomal enzymes. The cytosol-specific isoforms form a subclass of class III and are conserved only in Brassicaceae plants. With some exceptions, all land plants and a charophyte algae, Klebsormidium flaccidum, contain all three classes. Using reverse genetic analysis of Arabidopsis thaliana mutants lacking one or more isoforms, we provide new insight into the roles of MDARs; for example, (1) the lack of two isoforms in a specific combination results in lethality, and (2) the role of MDARs in ascorbate redox regulation in leaves can be largely compensated by other systems. Based on these findings, we discuss the distribution and function of MDAR isoforms in land plants and their cooperation with other recycling systems.
引用
收藏
页数:23
相关论文
共 72 条
  • [11] Galtier N, 1996, COMPUT APPL BIOSCI, V12, P543
  • [12] Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol
    Gest, Noe
    Garchery, Cecile
    Gautier, Helene
    Jimenez, Ana
    Stevens, Rebecca
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2013, 11 (03) : 344 - 354
  • [13] Phytozome: a comparative platform for green plant genomics
    Goodstein, David M.
    Shu, Shengqiang
    Howson, Russell
    Neupane, Rochak
    Hayes, Richard D.
    Fazo, Joni
    Mitros, Therese
    Dirks, William
    Hellsten, Uffe
    Putnam, Nicholas
    Rokhsar, Daniel S.
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) : D1178 - D1186
  • [14] Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate
    Green, MA
    Fry, SC
    [J]. NATURE, 2005, 433 (7021) : 83 - 87
  • [15] Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato
    Haroldsen, Victor M.
    Chi-Ham, Cecilia L.
    Kulkarni, Shashank
    Lorence, Argelia
    Bennett, Alan B.
    [J]. PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2011, 49 (10) : 1244 - 1249
  • [16] Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide
    Hayashi, M
    Aoki, M
    Kondo, M
    Nishimura, M
    [J]. PLANT AND CELL PHYSIOLOGY, 1997, 38 (06) : 759 - 768
  • [17] Redox-dependent control of nuclear transcription in plants
    He, Huaming
    Van Breusegem, Frank
    Mhamdi, Amna
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (14) : 3359 - 3372
  • [18] Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation
    Hori, Koichi
    Maruyama, Fumito
    Fujisawa, Takatomo
    Togashi, Tomoaki
    Yamamoto, Nozomi
    Seo, Mitsunori
    Sato, Syusei
    Yamada, Takuji
    Mori, Hiroshi
    Tajima, Naoyuki
    Moriyama, Takashi
    Ikeuchi, Masahiko
    Watanabe, Mai
    Wada, Hajime
    Kobayashi, Koichi
    Saito, Masakazu
    Masuda, Tatsuru
    Sasaki-Sekimoto, Yuko
    Mashiguchi, Kiyoshi
    Awai, Koichiro
    Shimojima, Mie
    Masuda, Shinji
    Iwai, Masako
    Nobusawa, Takashi
    Narise, Takafumi
    Kondo, Satoshi
    Saito, Hikaru
    Sato, Ryoichi
    Murakawa, Masato
    Ihara, Yuta
    Oshima-Yamada, Yui
    Ohtaka, Kinuka
    Satoh, Masanori
    Sonobe, Kohei
    Ishii, Midori
    Ohtani, Ryosuke
    Kanamori-Sato, Miyu
    Honoki, Rina
    Miyazaki, Daichi
    Mochizuki, Hitoshi
    Umetsu, Jumpei
    Higashi, Kouichi
    Shibata, Daisuke
    Kamiya, Yuji
    Sato, Naoki
    Nakamura, Yasukazu
    Tabata, Satoshi
    Ida, Shigeru
    Kurokawa, Ken
    Ohta, Hiroyuki
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [19] WoLF PSORT: protein localization predictor
    Horton, Paul
    Park, Keun-Joon
    Obayashi, Takeshi
    Fujita, Naoya
    Harada, Hajime
    Adams-Collier, C. J.
    Nakai, Kenta
    [J]. NUCLEIC ACIDS RESEARCH, 2007, 35 : W585 - W587
  • [20] HOSSAIN MA, 1985, J BIOL CHEM, V260, P2920