A deep learning model for the detection of both advanced and early glaucoma using fundus photography
被引:141
作者:
Ahn, Jin Mo
论文数: 0引用数: 0
h-index: 0
机构:
Soongsil Univ, Dept Bioinformat & Life Sci, Seoul, South KoreaSoongsil Univ, Dept Bioinformat & Life Sci, Seoul, South Korea
Ahn, Jin Mo
[1
]
Kim, Sangsoo
论文数: 0引用数: 0
h-index: 0
机构:
Soongsil Univ, Dept Bioinformat & Life Sci, Seoul, South KoreaSoongsil Univ, Dept Bioinformat & Life Sci, Seoul, South Korea
Kim, Sangsoo
[1
]
Ahn, Kwang-Sung
论文数: 0引用数: 0
h-index: 0
机构:
PDXen Biosyst Inc, Funct Genome Inst, Seoul, South KoreaSoongsil Univ, Dept Bioinformat & Life Sci, Seoul, South Korea
Ahn, Kwang-Sung
[2
]
Cho, Sung-Hoon
论文数: 0引用数: 0
h-index: 0
机构:
PDXen Biosyst Inc, Funct Genome Inst, Seoul, South KoreaSoongsil Univ, Dept Bioinformat & Life Sci, Seoul, South Korea
Cho, Sung-Hoon
[2
]
Lee, Kwan Bok
论文数: 0引用数: 0
h-index: 0
机构:
Kims Eye Hosp, Seoul, South KoreaSoongsil Univ, Dept Bioinformat & Life Sci, Seoul, South Korea
Lee, Kwan Bok
[3
]
Kim, Ungsoo Samuel
论文数: 0引用数: 0
h-index: 0
机构:
Kims Eye Hosp, Seoul, South Korea
Konyang Univ, Dept Ophthalmol, Coll Med, Daejeon, South KoreaSoongsil Univ, Dept Bioinformat & Life Sci, Seoul, South Korea
Kim, Ungsoo Samuel
[3
,4
]
机构:
[1] Soongsil Univ, Dept Bioinformat & Life Sci, Seoul, South Korea
[2] PDXen Biosyst Inc, Funct Genome Inst, Seoul, South Korea
[3] Kims Eye Hosp, Seoul, South Korea
[4] Konyang Univ, Dept Ophthalmol, Coll Med, Daejeon, South Korea
来源:
PLOS ONE
|
2018年
/
13卷
/
11期
关键词:
CLASSIFIERS;
CLASSIFICATION;
D O I:
10.1371/journal.pone.0207982
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Purpose To build a deep learning model to diagnose glaucoma using fundus photography. Design Cross sectional case study Subjects, Participants and Controls: A total of 1,542 photos (786 normal controls, 467 advanced glaucoma and 289 early glaucoma patients) were obtained by fundus photography. Method The whole dataset of 1,542 images were split into 754 training, 324 validation and 464 test datasets. These datasets were used to construct simple logistic classification and convolutional neural network using Tensorflow. The same datasets were used to fine tune pretrained GoogleNet Inception v3 model. Results The simple logistic classification model showed a training accuracy of 82.9%, validation accuracy of 79.9% and test accuracy of 77.2%. Convolutional neural network achieved accuracy and area under the receiver operating characteristic curve (AUROC) of 92.2% and 0.98 on the training data, 88.6% and 0.95 on the validation data, and 87.9% and 0.94 on the test data. Transfer-learned GoogleNet Inception v3 model achieved accuracy and AUROC of 99.7% and 0.99 on training data, 87.7% and 0.95 on validation data, and 84.5% and 0.93 on test data. Conclusion Both advanced and early glaucoma could be correctly detected via machine learning, using only fundus photographs. Our new model that is trained using convolutional neural network is more efficient for the diagnosis of early glaucoma than previously published models.
引用
收藏
页数:8
相关论文
共 22 条
[1]
[Anonymous], 2017, Gen Relativ Quantum Cosmol Univ, DOI DOI 10.1103/PHYSREVD.97.101501
机构:
Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Esteva, Andre
Kuprel, Brett
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Kuprel, Brett
Novoa, Roberto A.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Dermatol, Stanford, CA 94305 USA
Stanford Univ, Dept Pathol, Stanford, CA 94305 USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Novoa, Roberto A.
Ko, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Dermatol, Stanford, CA 94305 USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Ko, Justin
Swetter, Susan M.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Dermatol, Stanford, CA 94305 USA
Vet Affairs Palo Alto Hlth Care Syst, Dept Serv, Palo Alto, CA USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
机构:
Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Esteva, Andre
Kuprel, Brett
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Kuprel, Brett
Novoa, Roberto A.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Dermatol, Stanford, CA 94305 USA
Stanford Univ, Dept Pathol, Stanford, CA 94305 USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Novoa, Roberto A.
Ko, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Dermatol, Stanford, CA 94305 USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
Ko, Justin
Swetter, Susan M.
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Dermatol, Stanford, CA 94305 USA
Vet Affairs Palo Alto Hlth Care Syst, Dept Serv, Palo Alto, CA USAStanford Univ, Dept Elect Engn, Stanford, CA 94305 USA