Simultaneous specific heat and thermal conductivity measurement of individual nanostructures

被引:9
作者
Zheng, Jianlin [1 ]
Wingert, Matthew C. [1 ]
Moon, Jaeyun [2 ]
Chen, Renkun [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
specific heat; thermal conductivity; phonon spectra; nanowire; nanofiber; CARBON NANOTUBES; POLYMER NANOFIBERS; SILICON NANOWIRES; PHONON TRANSPORT; 3-OMEGA METHOD; GRAPHENE;
D O I
10.1088/0268-1242/31/8/084005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fundamental phonon transport properties in semiconductor nanostructures are important for their applications in energy conversion and storage, such as thermoelectrics and photovoltaics. Thermal conductivity measurements of semiconductor nanostructures have been extensively pursued and have enhanced our understanding of phonon transport physics. Specific heat of individual nanostructures, despite being an important thermophysical parameter that reflects the thermodynamics of solids, has remained difficult to characterize. Prior measurements were limited to ensembles of nanostructures in which coupling and sample inhomogeneity could play a role. Herein we report the first simultaneous specific heat and thermal conductivity measurements of individual rod-like nanostructures such as nanowires and nanofibers. This technique is demonstrated by measuring the specific heat and thermal conductivity of single similar to 600-700 nm diameter Nylon-11 nanofibers (NFs). The results show that the thermal conductivity of the NF is increased by 50% over the bulk value, while the specific heat of the NFs exhibits bulk-like behavior. We find that the thermal diffusivity obtained from the measurement, which is related to the phonon mean free path (MFP), decreases with temperature, indicating that the intrinsic phonon Umklapp scattering plays a role in the NFs. This platform can also be applied to one-and two-dimensional semiconductor nanostructures to probe size effects on the phonon spectra and other transport physics.
引用
收藏
页数:6
相关论文
共 29 条
  • [1] Effect of supramolecular structure on polymer nanofibre elasticity
    Arinstein, Arkadii
    Burman, Michael
    Gendelman, Oleg
    Zussman, Eyal
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (01) : 59 - 62
  • [2] Ballistic to diffusive crossover of heat flow in graphene ribbons
    Bae, Myung-Ho
    Li, Zuanyi
    Aksamija, Zlatan
    Martin, Pierre N.
    Xiong, Feng
    Ong, Zhun-Yong
    Knezevic, Irena
    Pop, Eric
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [3] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [4] Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method
    Choi, Tae-Youl
    Poulikakos, Dimos
    Tharian, Joy
    Sennhauser, Urs
    [J]. NANO LETTERS, 2006, 6 (08) : 1589 - 1593
  • [5] Low-dimensional phonon specific heat of titanium dioxide nanotubes
    Dames, C
    Poudel, B
    Wang, WZ
    Huang, JY
    Ren, ZF
    Sun, Y
    Oh, JI
    Opeil, C
    Naughton, MJ
    Chen, G
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (03)
  • [6] Measuring the thermal conductivity of a single carbon nanotube
    Fujii, M
    Zhang, X
    Xie, HQ
    Ago, H
    Takahashi, K
    Ikuta, T
    Abe, H
    Shimizu, T
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (06)
  • [7] Enhanced thermoelectric performance of rough silicon nanowires
    Hochbaum, Allon I.
    Chen, Renkun
    Delgado, Raul Diaz
    Liang, Wenjie
    Garnett, Erik C.
    Najarian, Mark
    Majumdar, Arun
    Yang, Peidong
    [J]. NATURE, 2008, 451 (7175) : 163 - U5
  • [8] Quantized phonon spectrum of single-wall carbon nanotubes
    Hone, J
    Batlogg, B
    Benes, Z
    Johnson, AT
    Fischer, JE
    [J]. SCIENCE, 2000, 289 (5485) : 1730 - 1733
  • [9] 3-omega measurements of vertically oriented carbon nanotubes on silicon
    Hu, X. Jack
    Padilla, Antonio A.
    Xu, Jun
    Fisher, Timothy S.
    Goodson, Kenneth E.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (11): : 1109 - 1113
  • [10] Incropera F P, 2007, INTRO HEAT TRANSFER, P299