Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries

被引:160
|
作者
Yan, Zhanheng [1 ]
Yang, Qin-Wen [2 ]
Wang, Qinghong [3 ]
Ma, Jianmin [1 ,4 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[3] Jiangsu Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Green Synthet Chem Funct Mat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Zhengzhou Univ, Key Lab Mat Proc & Mold, Minist Educ, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen doping; Carbon; Anode; Lithium-ion batteries; Sodium-ion batteries; LITHIUM-ION; CATHODE MATERIALS; ORGANIC FRAMEWORK; AMORPHOUS-CARBON; BIOMASS; GRAPHENE; STORAGE; NETWORKS; LEAVES; HOLLOW;
D O I
10.1016/j.cclet.2019.11.002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomass-derived carbon materials have obtained great attention due to their sustainability, easy availability, low cost and environmentally benign. In this work, bamboo leaves derived nitrogen doped hierarchically porous carbon have been efficiently synthesized via an annealing approach, followed by an etching process in HF solution. Electrochemical measurements demonstrate that the unique porous structure, together with the inherent high nitrogen content, endow the as-derived carbon with excellent lithium/sodium storage performance. The porous carbon annealed at 700 degrees C presents outstanding rate capability and remarkable long-term stability as anodes for both lithium-ion batteries and sodium-ion batteries. The optimized carbon delivers a high discharge capacity of 450 mAh/g after 500 cycles at the current density of 0.2 A/g for LIBs, and a discharge capacity of 180 mAh/g after 300 cycles at the current density of 0.1 A/g for SIBs (C) 2019 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:583 / 588
页数:6
相关论文
共 50 条
  • [31] Disordered carbon anodes for Na-ion batteries—quo vadis?
    Fei Xie
    Zhen Xu
    Zhenyu Guo
    Yaxiang Lu
    Liquan Chen
    MariaMagdalena Titirici
    YongSheng Hu
    Science China(Chemistry), 2021, 64 (10) : 1679 - 1692
  • [32] Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries
    Luo, Wei
    Jian, Zelang
    Xing, Zhenyu
    Wang, Wei
    Bommier, Clement
    Lerner, Michael M.
    Ji, Xiulei
    ACS CENTRAL SCIENCE, 2015, 1 (09) : 516 - 522
  • [33] Disordered carbon anodes for Na-ion batteries—quo vadis?
    Fei Xie
    Zhen Xu
    Zhenyu Guo
    Yaxiang Lu
    Liquan Chen
    Maria-Magdalena Titirici
    Yong-Sheng Hu
    Science China(Chemistry), 2021, (10) : 1679 - 1692
  • [34] Disordered carbon anodes for Na-ion batteries—quo vadis?
    Fei Xie
    Zhen Xu
    Zhenyu Guo
    Yaxiang Lu
    Liquan Chen
    Maria-Magdalena Titirici
    Yong-Sheng Hu
    Science China Chemistry, 2021, 64 : 1679 - 1692
  • [35] A review on the use of carbon nanostructures as anodes of Na-ion batteries
    Ozsin, Gamzenur
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2021, 24 (03): : 1151 - 1170
  • [36] Aluminene as a Low-Cost Anode Material for Li- and Na-Ion Batteries
    Yadav, Kiran
    Ray, Nirat
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (31) : 37337 - 37343
  • [37] Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries
    Xu, Huajun
    Fan, Jiaxing
    Pang, Di
    Zheng, Yingying
    Chen, Gang
    Du, Fei
    Gogotsi, Yury
    Dall'Agnese, Yohan
    Gao, Yu
    CHEMICAL ENGINEERING JOURNAL, 2022, 436
  • [38] Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries
    Liu, Tianyuan
    Kim, Ki Chul
    Lee, Byeongyong
    Chen, Zhongming
    Noda, Suguru
    Jang, Seung Soon
    Lee, Seung Woo
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (01) : 205 - 215
  • [39] Benzo-Dipteridine Derivatives as Organic Cathodes for Li- and Na-ion Batteries
    Cariello, Michele
    Johnston, Beth
    Bhosale, Manik
    Amores, Marco
    Wilson, Emma
    McCarron, Liam J.
    Wilson, Claire
    Corr, Serena A.
    Cooke, Graeme
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) : 8302 - 8308
  • [40] Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes
    Park, Ah-Ram
    Park, Cheol-Min
    ACS NANO, 2017, 11 (06) : 6074 - 6084