Scaling of Small-scale Dynamo Properties in the Rayleigh-Taylor Instability

被引:9
作者
Skoutnev, V. [1 ,2 ]
Most, E. R. [3 ,4 ,5 ]
Bhattacharjee, A. [1 ,2 ]
Philippov, A. A. [6 ]
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Max Planck Princeton Ctr, Princeton, NJ 08544 USA
[3] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[4] Princeton Univ, Princeton Grav Initiat, Princeton, NJ 08544 USA
[5] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[6] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
基金
美国国家科学基金会;
关键词
MAGNETIC-FIELDS; REYNOLDS-NUMBER; SIMULATIONS; DECAY; TURBULENCE;
D O I
10.3847/1538-4357/ac1ba4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive scaling relations based on freefall and isotropy assumptions for the kinematic small-scale dynamo growth rate and amplification factor over the course of the mixing, saturation, and decay phases of the Rayleigh-Taylor instability (RTI) in a fully ionized plasma. The scaling relations are tested using sets of three-dimensional, visco-resistive MHD simulations of the RTI. They are found to hold in the saturation phase, but exhibit discrepancies during the mixing and decay phases, suggesting a need to relax either the freefall or isotropy assumptions. Application of the scaling relations allows for quantitative prediction of the net amplification of magnetic energy in the kinematic dynamo phase and therefore a determination of whether the magnetic energy either remains sub-equipartition at all velocity scales or reaches equipartition with at least some scales of the turbulent kinetic energy in laboratory and astrophysical scenarios. As an example, we consider the dynamo in RTI-unstable regions of the outer envelope of a binary neutron star merger, and predict that the kinematic regime of the small-scale dynamo ends on the timescale of nanoseconds and then reaches saturation on a timescale of microseconds, which are both fast compared to the millisecond relaxation time of the post-merger.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence
    Boffetta, G.
    Mazzino, A.
    Musacchio, S.
    Vozella, L.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [2] UNIVERSALITY OF THE SMALL-SCALE DYNAMO MECHANISM
    Moll, R.
    Graham, J. Pietarila
    Pratt, J.
    Cameron, R. H.
    Mueller, W. -C.
    Schuessler, M.
    ASTROPHYSICAL JOURNAL, 2011, 736 (01)
  • [3] Rayleigh-Taylor instability with gravity reversal
    Livescu, D.
    Wei, T.
    Brady, P. T.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 417
  • [4] Statistical measurements of scaling and anisotropy of turbulent flows induced by Rayleigh-Taylor instability
    Cabot, W.
    Zhou, Ye
    PHYSICS OF FLUIDS, 2013, 25 (01)
  • [5] A NUMERICAL STUDY OF RAYLEIGH-TAYLOR INSTABILITY IN MAGNETIC FLUIDS
    JUN, BI
    NORMAN, ML
    STONE, JM
    ASTROPHYSICAL JOURNAL, 1995, 453 (01) : 332 - 349
  • [6] Rayleigh-Taylor Instability With Varying Periods of Zero Acceleration
    Aslangil, Denis
    Farley, Zachary
    Lawrie, Andrew G. W.
    Banerjee, Arindam
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [7] SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE
    Perez, Jean Carlos
    Mason, Joanne
    Boldyrev, Stanislav
    Cattaneo, Fausto
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 793 (01)
  • [8] Asymptotic bubble evolutions of the Rayleigh-Taylor instability
    Sohn, Sung-Ik
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (11) : 4017 - 4022
  • [9] Kinetic Theory of the Magnetic Rayleigh-Taylor Instability
    Onishchenko, O. G.
    Pokhotelov, O. A.
    GEOMAGNETISM AND AERONOMY, 2013, 53 (05) : 626 - 628
  • [10] A comparison of mix models for the Rayleigh-Taylor instability
    Waltz, J.
    Gianakon, T. A.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (01) : 70 - 79