Dust surface potential in a generalized (r, q)-distributed multi-ion dusty plasma

被引:15
作者
Ali, S. [1 ,2 ,3 ]
Abid, A. A. [4 ]
Du, J. [5 ]
Mamun, A. A. [6 ]
机构
[1] Quaid E Azam Univ Campus, Natl Ctr Phys, Shahdra Valley Rd, Islamabad 44000, Pakistan
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei, Anhui, Peoples R China
[5] Tianjin Univ, Sch Sci, Dept Phys, Tianjin, Peoples R China
[6] Jahangirnagar Univ, Dept Phys, Savar, Bangladesh
关键词
dust grain surface potential; dusty plasma; orbit motion limitted theory; R; Q DISTRIBUTION FUNCTION; ION-ACOUSTIC-WAVES; NEGATIVE-IONS; DISPERSION FUNCTION; LOW-PRESSURE; ELECTRON; PARTICLES; GRAINS; MODEL;
D O I
10.1002/ctpp.201700065
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Potential on the surface of spherical dust is theoretically determined by employing the generalized power law (r, q) distribution function (df) in a multi-ion dusty plasma. Considering a steady-state condition, the current balance equation is solved for negatively charged dust particulates and analysed two specific cases, namely, the negative ions as streaming and dynamic non-thermal particles. It is numerically shown that dust grain (surface) potential is significantly modified by the variation of different plasma parameters, for example, the r and q spectral indices attributed to generalized power law df, the streaming and non-thermal negative ions, the negative ion-to-electron temperature ratio and the density ratio involving the negative-to-positive ions. The relevance to low-temperature laboratory non-thermal dusty plasma is briefly discussed by incorporating two types of oxygen ion species.
引用
收藏
页码:976 / 984
页数:9
相关论文
共 65 条
  • [31] Observations of the development of electron temperature anisotropies in Earth's magnetosheath
    Masood, W.
    Schwartz, S. J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A1)
  • [32] Laboratory studies of waves and instabilities in dusty plasmas
    Merlino, RL
    Barkan, A
    Thompson, C
    D'Angelo, N
    [J]. PHYSICS OF PLASMAS, 1998, 5 (05) : 1607 - 1614
  • [33] Charge neutralization of dust particles in a plasma with negative ions
    Merlino, Robert L.
    Kim, Su-Hyun
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (09)
  • [34] Dust acoustic waves in a dc glow-discharge plasma
    Molotkov, VI
    Nefedov, AP
    Torchinskii, VM
    Fortov, VE
    Khrapak, AG
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 89 (03) : 477 - 480
  • [35] Study of non-Maxwellian trapped electrons by using generalized (r,q) distribution function and their effects on the dynamics of ion acoustic solitary wave
    Mushtaq, A
    Shah, HA
    [J]. PHYSICS OF PLASMAS, 2006, 13 (01) : 1 - 7
  • [36] EXPERIMENTS ON ION-ACOUSTIC SOLITONS IN PLASMAS
    NAKAMURA, Y
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 1982, 10 (03) : 180 - 195
  • [37] Ion-acoustic waves in a multicomponent plasma with negative ions
    Nakamura, Y
    Odagiri, T
    Tsukabayashi, I
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (01) : 105 - 115
  • [38] DUSTY PLASMAS
    NORTHROP, TG
    [J]. PHYSICA SCRIPTA, 1992, 45 (05): : 475 - 490
  • [39] Solitary electromagnetic pulses detected with super-Alfvenic flows in Earth's geomagnetic tail
    Parks, G. K.
    Lee, E.
    Lin, N.
    Mozer, F.
    Wilber, M.
    Dandouras, I.
    Reme, H.
    Lucek, E.
    Fazakerley, A.
    Goldstein, M.
    Gurgiolo, C.
    Canu, P.
    Cornilleau-Wehrlin, N.
    Decreau, P.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (26)
  • [40] Dispersion of plasma dust acoustic waves in the strong-coupling regime
    Pieper, JB
    Goree, J
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (15) : 3137 - 3140