Molybdenum-doped lithium-rich layered-structured cathode material Li1.2Ni0.2Mn0.6O2 with high specific capacity and improved rate performance

被引:59
作者
Zang, Yong [1 ,2 ]
Ding, Chu-Xiong [1 ,2 ]
Wang, Xiao-Cheng [1 ,2 ]
Wen, Zhao-Yin [3 ]
Chen, Chun-Hua [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
关键词
lithium ion battery; electrode; rate capability; sol-gel; impedance; ELECTROCHEMICAL PERFORMANCE; RATE CAPABILITY; NI; CO; STABILITY; ELECTRODE; X=0; MN;
D O I
10.1016/j.electacta.2015.03.223
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Fine powders of Li1.2Ni0.2Mn0.6 xMo(x)O(2) (x = 0, 0.002, 0.005, 0.01, 0.05) are prepared by a thermopolymerization method. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements are carried out to characterize these samples. The maximum Mo-doping level to obtain a pure layered phase is 0.005. The Mo-doped samples show a great improvement in rate performance and cycling stability. For the optimal composition Li1.2Ni0.2Mn0.59-Mo0.01O2, it exhibits a discharge capacity of 245 and 110 mA h g(-1) at 0.1 C and 5 C, respectively. It retains a capacity of 229 mA h g(-1) at 0.1 C after 204 cycles with a capacity retention of 93.2%. This study suggests that the partial substitution of Mn4+ with Mo6+ can improve both the rate capability and cycle performance of this high-capacity cathode material. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:234 / 239
页数:6
相关论文
共 22 条
[1]   Polyaniline Nanocoating on the Surface of Layered Li[Li0.2Co0.1Mn0.7]O2 Nanodisks and Enhanced Cyclability as a Cathode Electrode for Rechargeable Lithium-Ion Battery [J].
Ahn, Docheon ;
Koo, Yang-Mo ;
Kim, Min Gyu ;
Shin, Namsoo ;
Park, Jaehun ;
Eom, Junho ;
Cho, Jaephil ;
Shin, Tae Joo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (08) :3675-3680
[2]   Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3 [J].
Gao, Yurui ;
Ma, Jun ;
Wang, Xuefeng ;
Lu, Xia ;
Bai, Ying ;
Wang, Zhaoxiang ;
Chen, Liquan .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (13) :4811-4818
[3]   Understanding structural defects in lithium-rich layered oxide cathodes [J].
Jarvis, Karalee A. ;
Deng, Zengqiang ;
Allard, Lawrence F. ;
Manthiram, Arumugam ;
Ferreira, Paulo J. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (23) :11550-11555
[4]   Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution [J].
Jarvis, Karalee A. ;
Deng, Zengqiang ;
Allard, Lawrence F. ;
Manthiram, Arumugam ;
Ferreira, Paulo J. .
CHEMISTRY OF MATERIALS, 2011, 23 (16) :3614-3621
[5]   Zr-doped Li[Ni0.5-xMn0.5-xZr2x]O2 (x=0, 0.025) as cathode material for lithium ion batteries [J].
Jeong, KH ;
Ha, HW ;
Yun, NJ ;
Hong, MZ ;
Kim, K .
ELECTROCHIMICA ACTA, 2005, 50 (27) :5349-5353
[6]   Comparative study of Li(Ni0.5-xMn0.5-xM2x')O2 (M' = Mg, Al, Co, Ni, Ti; x=0, 0.025) cathode materials for rechargeable lithium batteries [J].
Kang, SH ;
Amine, K .
JOURNAL OF POWER SOURCES, 2003, 119 :150-155
[7]   Enhancing the rate capability of high capacity xLi2MnO3 • (1-x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment [J].
Kang, Sun-Ho ;
Thackeray, Michael M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) :748-751
[8]   CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries [J].
Liu, Xiaoyu ;
Liu, Jali ;
Huang, Tao ;
Yu, Aishui .
ELECTROCHIMICA ACTA, 2013, 109 :52-58
[9]   Improvement electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 with Li4Ti5O12 coating [J].
Liu, Yunjian ;
Gao, Yanyong ;
Wang, Qiliang ;
Dou, Aichun .
IONICS, 2014, 20 (05) :739-745
[10]   Effect of MnO2 modification on electrochemical performance of LiNi0.2Li0.2Mn0.6O2 layered solid solution cathode [J].
Liu, Yunjian ;
Liu, Sanbing ;
Wang, Yaping ;
Chen, Long ;
Chen, Xiaohua .
JOURNAL OF POWER SOURCES, 2013, 222 :455-460