A Smoothing Levenberg-Marquardt Method for the Complementarity Problem Over Symmetric Cone

被引:0
作者
Liu, Xiangjing [1 ]
Liu, Sanyang [1 ]
机构
[1] Xian Technol Univ, 2 Xuefuzhonglu Rd, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
complementarity problem; symmetric cone; Levenberg-Marquardt method; Euclidean Jordan algebra; local error bound; ALGORITHMS;
D O I
10.21136/AM.2021.0064-20
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 50 条
  • [41] The Levenberg-Marquardt method: an overview of modern convergence theories and more
    Fischer, Andreas
    Izmailov, Alexey F.
    Solodov, Mikhail V.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 89 (01) : 33 - 67
  • [42] A higher-order Levenberg-Marquardt method for nonlinear equations
    Yang, Xiao
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10682 - 10694
  • [43] A modified Levenberg-Marquardt method with line search for nonlinear equations
    Chen, Liang
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (03) : 753 - 779
  • [44] Logarithmic convergence rate of Levenberg-Marquardt method with application to an inverse potential problem
    Boeckmann, Christine
    Kammanee, Athassawat
    Braunss, Andreas
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2011, 19 (03): : 345 - 367
  • [45] Improved smoothing Newton methods for symmetric cone complementarity problems
    Li, Yuan Min
    Wang, Xing Tao
    Wei, De Yun
    OPTIMIZATION LETTERS, 2012, 6 (03) : 471 - 487
  • [46] A Regularization Smoothing Newton Method for the Symmetric Cone Complementarity Problem with the Cartesian P0-property
    Xiang-jing Liu
    San-yang Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2025, 41 (2): : 556 - 572
  • [47] A new projected Barzilai–Borwein method for the symmetric cone complementarity problem
    Xiangjing Liu
    Sanyang Liu
    Japan Journal of Industrial and Applied Mathematics, 2020, 37 : 867 - 882
  • [48] Improved smoothing Newton methods for symmetric cone complementarity problems
    Yuan Min Li
    Xing Tao Wang
    De Yun Wei
    Optimization Letters, 2012, 6 : 471 - 487
  • [49] Calculation of phase equilibria based on the Levenberg-Marquardt method
    Zhang, RJ
    Li, L
    Chen, ZW
    He, Z
    Jie, WQ
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2005, 21 (01) : 10 - 12
  • [50] Globally Convergent Levenberg-Marquardt Method for Phase Retrieval
    Ma, Chao
    Liu, Xin
    Wen, Zaiwen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2343 - 2359