A Smoothing Levenberg-Marquardt Method for the Complementarity Problem Over Symmetric Cone

被引:0
|
作者
Liu, Xiangjing [1 ]
Liu, Sanyang [1 ]
机构
[1] Xian Technol Univ, 2 Xuefuzhonglu Rd, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
complementarity problem; symmetric cone; Levenberg-Marquardt method; Euclidean Jordan algebra; local error bound; ALGORITHMS;
D O I
10.21136/AM.2021.0064-20
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 50 条
  • [21] A new smoothing and regularization Newton method for the symmetric cone complementarity problem
    Ruijuan Liu
    Journal of Applied Mathematics and Computing, 2017, 55 : 79 - 97
  • [22] A new smoothing and regularization Newton method for the symmetric cone complementarity problem
    Liu, Ruijuan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) : 79 - 97
  • [23] A Levenberg-Marquardt method with approximate projections
    Behling, R.
    Fischer, A.
    Herrich, M.
    Iusem, A.
    Ye, Y.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (1-2) : 5 - 26
  • [24] A regularized smoothing Newton method for solving the symmetric cone complementarity problem
    Ma, Changfeng
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2515 - 2527
  • [25] On the convergence properties of the Levenberg-Marquardt method
    Zhang, JL
    OPTIMIZATION, 2003, 52 (06) : 739 - 756
  • [26] A Levenberg-Marquardt method with approximate projections
    R. Behling
    A. Fischer
    M. Herrich
    A. Iusem
    Y. Ye
    Computational Optimization and Applications, 2014, 59 : 5 - 26
  • [27] Convergence analysis of the Levenberg-Marquardt method
    Luo, Xin-Long
    Liao, Li-Zhi
    Tam, Hon Wah
    OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04) : 659 - 678
  • [28] A Levenberg-Marquardt Method for Tensor Approximation
    Zhao, Jinyao
    Zhang, Xuejuan
    Zhao, Jinling
    SYMMETRY-BASEL, 2023, 15 (03):
  • [29] Some research on Levenberg-Marquardt method for the nonlinear equations
    Ma, Changfeng
    Jiang, Lihua
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 1032 - 1040
  • [30] Globalization of convergence of the constrained piecewise Levenberg-Marquardt method
    Izmailov, Alexey F.
    Uskov, Evgeniy I.
    Zhibai, Yan
    OPTIMIZATION METHODS & SOFTWARE, 2024,