Long-time stability of the quantum hydrodynamic system on irrational tori
被引:10
作者:
Feola, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
Feola, Roberto
[1
]
Iandoli, Felice
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Univ, Lab Jacques Louis Lions, 5 Pl Jussieu, F-75005 Paris, FranceUniv Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
Iandoli, Felice
[2
]
Murgante, Federico
论文数: 0引用数: 0
h-index: 0
机构:
Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, ItalyUniv Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
Murgante, Federico
[3
]
机构:
[1] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[2] Sorbonne Univ, Lab Jacques Louis Lions, 5 Pl Jussieu, F-75005 Paris, France
[3] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
来源:
MATHEMATICS IN ENGINEERING
|
2022年
/
4卷
/
03期
关键词:
small divisors;
long time stability;
QHD system;
Euler-Korteweg;
irrational tori;
KLEIN-GORDON EQUATIONS;
BIRKHOFF NORMAL-FORM;
EXISTENCE;
POSEDNESS;
D O I:
10.3934/mine.2022023
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider the quantum hydrodynamic system on a d-dimensional irrational torus with d = 2, 3. We discuss the behaviour, over a "non-trivial" time interval, of the H-s-Sobolev norms of solutions. More precisely we prove that, for generic irrational tori, the solutions, evolving form epsilon-small initial conditions, remain bounded in H-s for a time scale of order O(epsilon(-1-1/(d-1)+)), which is strictly larger with respect to the time-scale provided by local theory. We exploit a Madelung transformation to rewrite the system as a nonlinear Schrodinger equation. We therefore implement a Birkhoff normal form procedure involving small divisors arising form three waves interactions. The main difficulty is to control the loss of derivatives coming from the exchange of energy between high Fourier modes. This is due to the irrationality of the torus which prevents to have "good separation" properties of the eigenvalues of the linearized operator at zero. The main steps of the proof are: (i) to prove precise lower bounds on small divisors; (ii) to construct a modified energy by means of a suitable high/low frequencies analysis, which gives an a priori estimate on the solutions.
机构:
Sorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, FranceSorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
Audiard, Corentin
Haspot, Boris
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, Univ Paris Dauphine, CNRS, Ceremade,UMR 7534, F-75775 Paris 16, FranceSorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
机构:
Sorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, FranceSorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
Audiard, Corentin
Haspot, Boris
论文数: 0引用数: 0
h-index: 0
机构:
PSL Res Univ, Univ Paris Dauphine, CNRS, Ceremade,UMR 7534, F-75775 Paris 16, FranceSorbonne Univ, UPMC Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France