Variational iteration method for solving multispecies Lotka-Volterra equations

被引:42
|
作者
Batiha, B. [1 ]
Noorani, M. S. M. [1 ]
Hashim, I. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Bangi 43600, Selangor, Malaysia
关键词
variational iteration method; Adomian decomposition method; fourth-order Runge-Kutta method; Lotka-Volterra equations;
D O I
10.1016/j.camwa.2006.12.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper applies the variational iteration method to multispecies Lotka-Volterra equations. Comparisons with the Adomian decomposition and the fourth-order Runge-Kutta methods show that the variational iteration method is a powerful method for nonlinear equations. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:903 / 909
页数:7
相关论文
共 50 条
  • [31] Dynamical properties of discrete Lotka-Volterra equations
    Blackmore, D
    Chen, J
    Perez, J
    Savescu, M
    CHAOS SOLITONS & FRACTALS, 2001, 12 (13) : 2553 - 2568
  • [32] On the positivity of Poisson integrators for the Lotka-Volterra equations
    Beck, Melanie
    Gander, Martin J.
    BIT NUMERICAL MATHEMATICS, 2015, 55 (02) : 319 - 340
  • [33] HIERARCHICAL STRUCTURES IN LOTKA-VOLTERRA TYPE EQUATIONS
    SAKAGUCHI, H
    PHYSICS LETTERS A, 1994, 196 (1-2) : 38 - 42
  • [34] APPROXIMATE SOLUTIONS TO LOTKA-VOLTERRA COMPETITION EQUATIONS
    BREARLEY, JR
    SOUDACK, AC
    INTERNATIONAL JOURNAL OF CONTROL, 1978, 27 (06) : 933 - 941
  • [35] Operator splitting methods for the Lotka-Volterra equations
    Farago, Istvan
    Sebestyen, Gabriella Svantnerne
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (48) : 1 - 19
  • [37] Permanence in Multispecies Nonautonomous Lotka-Volterra Competitive Systems with Delays and Impulses
    Feng, Xiaomei
    Zhang, Fengqin
    Wang, Kai
    Li, Xiaoxia
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [38] Solving TSP by using Lotka-Volterra neural networks
    Li, Manli
    Yi, Zhang
    Zhu, Min
    NEUROCOMPUTING, 2009, 72 (16-18) : 3873 - 3880
  • [39] Variational iteration method for solving compressible Euler equations
    Zhao Guo-Zhong
    Yu Xi-Jun
    Xu Yun
    Zhu Jiang
    CHINESE PHYSICS B, 2010, 19 (07)
  • [40] Modified variational iteration method for solving Helmholtz equations
    Noor M.A.
    Mohyud-Din S.T.
    Computational Mathematics and Modeling, 2009, 20 (1) : 40 - 50