Formality for Lie algebroids

被引:19
作者
Calaque, D [1 ]
机构
[1] IRMA, F-67084 Strasbourg, France
关键词
D O I
10.1007/s00220-005-1350-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Dolgushev's generalization of Fedosov's method for deformation quantization, we give a positive answer to a question of P. Xu: can one prove a formality theorem for Lie algebroids ? As a direct application of this result, we obtain that any triangular Lie bialgebroid is quantizable.
引用
收藏
页码:563 / 578
页数:16
相关论文
共 15 条
[1]  
DASILVA C, 1999, BERKELEY MATH LECT N
[2]   Covariant and equivariant formality theorems [J].
Dolgushev, V .
ADVANCES IN MATHEMATICS, 2005, 191 (01) :147-177
[3]  
DOLGUSHEV V, 2004, IN PRESS ADV MATH
[4]  
DRINFELD VG, 1992, LECT NOTES MATH, V1510, P1
[5]   A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION [J].
FEDOSOV, BV .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 40 (02) :213-238
[6]   Lie algebroids, holonomy and characteristic classes [J].
Fernandes, RL .
ADVANCES IN MATHEMATICS, 2002, 170 (01) :119-179
[7]   Deformation quantization of Poisson manifolds [J].
Kontsevich, M .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (03) :157-216
[8]   Hopf algebroids and quantum groupoids [J].
Lu, JH .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (01) :47-70
[9]  
Mackenzie K., 1987, LONDON MATH SOC LECT, V124
[10]   LIE BIALGEBROIDS AND POISSON GROUPOIDS [J].
MACKENZIE, KCH ;
XU, P .
DUKE MATHEMATICAL JOURNAL, 1994, 73 (02) :415-452