POISSON STATISTICS FOR EIGENVALUES OF CONTINUUM RANDOM SCHRODINGER OPERATORS
被引:25
作者:
Combes, Jean-Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sud Toulon Var, Dept Math, F-83130 La Garde, France
CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille, FranceUniv Sud Toulon Var, Dept Math, F-83130 La Garde, France
Combes, Jean-Michel
[1
,2
]
Germinet, Francois
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cergy Pontoise, Dept Math, F-95000 Cergy Pontoise, FranceUniv Sud Toulon Var, Dept Math, F-83130 La Garde, France
Germinet, Francois
[3
]
Klein, Abel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Sud Toulon Var, Dept Math, F-83130 La Garde, France
Klein, Abel
[4
]
机构:
[1] Univ Sud Toulon Var, Dept Math, F-83130 La Garde, France
[2] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille, France
[3] Univ Cergy Pontoise, Dept Math, F-95000 Cergy Pontoise, France
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
We show absence of energy levels repulsion for the eigenvalues of random Schrodinger operators in the continuum. We prove that, in the localization region at the bottom of the spectrum, the properly rescaled eigenvalues of a continuum Anderson Hamiltonian are distributed as a Poisson point process with intensity measure given by the density of states. In addition, we prove that in this localization region the eigenvalues are simple. These results rely on a Minami estimate for continuum Anderson Hamiltonians. We also give a simple, transparent proof of Minami's estimate for the (discrete) Anderson model.