POISSON STATISTICS FOR EIGENVALUES OF CONTINUUM RANDOM SCHRODINGER OPERATORS

被引:25
作者
Combes, Jean-Michel [1 ,2 ]
Germinet, Francois [3 ]
Klein, Abel [4 ]
机构
[1] Univ Sud Toulon Var, Dept Math, F-83130 La Garde, France
[2] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille, France
[3] Univ Cergy Pontoise, Dept Math, F-95000 Cergy Pontoise, France
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Anderson localization; Poisson statistics of eigenvalues; Minami estimate; level statistics; DENSITY-OF-STATES; MULTISCALE ANALYSIS; CLASSICAL WAVES; SEMICIRCLE LAW; LOCALIZATION; SPECTRUM; DELOCALIZATION; EIGENFUNCTIONS; DIFFUSION; ABSENCE;
D O I
10.2140/apde.2010.3.49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show absence of energy levels repulsion for the eigenvalues of random Schrodinger operators in the continuum. We prove that, in the localization region at the bottom of the spectrum, the properly rescaled eigenvalues of a continuum Anderson Hamiltonian are distributed as a Poisson point process with intensity measure given by the density of states. In addition, we prove that in this localization region the eigenvalues are simple. These results rely on a Minami estimate for continuum Anderson Hamiltonians. We also give a simple, transparent proof of Minami's estimate for the (discrete) Anderson model.
引用
收藏
页码:49 / 80
页数:32
相关论文
共 50 条
[1]  
41Klein A., 2008, Random Schrodinger Operators, Panoramas et Syntheses, V25, P121
[2]   Moment analysis for localization in random Schrodinger operators [J].
Aizenman, M ;
Elgart, A ;
Naboko, S ;
Schenker, JH ;
Stolz, G .
INVENTIONES MATHEMATICAE, 2006, 163 (02) :343-413
[3]   Random matrix theory and the Anderson model [J].
Bellissard, J .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :739-754
[4]   Correlation estimates in the anderson model [J].
Bellissard, Jean V. ;
Hislop, Peter D. ;
Stolz, Gueter .
JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (04) :649-662
[5]  
CARMONA, 1990, SPECTRAL THEORY RAND
[6]  
CARMONA R, 1994, J FUNCT ANAL, V108, P41
[7]   An optimal wegner estimate and its application to the global continuity of the integrated density of states for random Schrodinger operators [J].
Combes, Jean-Michel ;
Hislop, Peter D. ;
Klopp, Frederic .
DUKE MATHEMATICAL JOURNAL, 2007, 140 (03) :469-498
[8]   Generalized Eigenvalue-Counting Estimates for the Anderson Model [J].
Combes, Jean-Michel ;
Germinet, Francois ;
Klein, Abel .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (02) :201-216
[9]   LOCALIZATION FOR SOME CONTINUOUS, RANDOM HAMILTONIANS IN D-DIMENSIONS [J].
COMBES, JM ;
HISLOP, PD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 124 (01) :149-180
[10]  
Combes JM, 2003, INT MATH RES NOTICES, V2003, P179