Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon

被引:127
作者
Beese-Vasbender, Pascal F. [1 ]
Grote, Jan-Philipp [1 ]
Garrelfs, Julia [2 ]
Stratmann, Martin [1 ]
Mayrhofer, Karl J. J. [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Dept Interface Chem & Surface Engn, D-40237 Dusseldorf, Germany
[2] Max Planck Inst Marine Mikrobiol, Dept Microbiol, D-28359 Bremen, Germany
关键词
Biocatalysis; Bioelectrochemistry; Carbon dioxide reduction; Extracellular electron transfer; Methanogenesis; Microbial electrosynthesis; EXTRACELLULAR ELECTRON-TRANSFER; STRAIN GO1; CO2; IRON; REDUCTION; CORROSION; METHANOGENESIS; FORMALDEHYDE; BACTERIA; GROWTH;
D O I
10.1016/j.bioelechem.2014.11.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reduction of carbon dioxide to methane by microorganisms attached to electrodes is a promising process in terms of renewable energy storage strategies. However the efficient and specific electrosynthesis of methane by methanogenic archaea on cathodes needs fundamental investigations of the electron transfer mechanisms at the microbe-electrode interface without the addition of artificial electron mediators. Using well-defined electrochemical techniques directly coupled to gas chromatography and surface analysis by scanning electron microscopy, it is shown that a pure culture of the marine lithoautotrophic Methanobacterium-like archaeon strain IM1 is capable to utilize electrons from graphite cathodes for a highly selective production of methane, without hydrogen serving as a cathode-generated electron carrier. Microbial electrosynthesis of methane with cultures of strain IM1 is achieved at a set potential of -0.4V vs. SHE and is characterized by a coulomb efficiency of 80%, with rates reaching 350 nmol d(-1) cm(-2) after 23 days of incubation. Moreover, potential step measurements reveal a biologically catalyzed hydrogen production at potentials more positive than abiotic hydrogen evolution on graphite, indicating that an excessive supply of electrons to strain IM1 results in proton reduction rather than in a further increase of methane production. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 43 条
  • [21] Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates
    Morita, Masahiko
    Malvankar, Nikhil S.
    Franks, Ashley E.
    Summers, Zarath M.
    Giloteaux, Ludovic
    Rotaru, Amelia E.
    Rotaru, Camelia
    Lovley, Derek R.
    [J]. MBIO, 2011, 2 (04):
  • [22] Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds
    Nevin, Kelly P.
    Woodard, Trevor L.
    Franks, Ashley E.
    Summers, Zarath M.
    Lovley, Derek R.
    [J]. MBIO, 2010, 1 (02):
  • [23] ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens
    Pablo Busalmen, Juan
    Esteve-Nunez, Abraham
    Berna, Antonio
    Miguel Feliu, Juan
    [J]. BIOELECTROCHEMISTRY, 2010, 78 (01) : 25 - 29
  • [24] Microbial ecology meets electrochemistry:: electricity-driven and driving communities
    Rabaey, Korneel
    Rodriguez, Jorge
    Blackall, Linda L.
    Keller, Jurg
    Gross, Pamela
    Batstone, Damien
    Verstraete, Willy
    Nealson, Kenneth H.
    [J]. ISME JOURNAL, 2007, 1 (01) : 9 - 18
  • [25] Microbial electrosynthesis - revisiting the electrical route for microbial production
    Rabaey, Korneel
    Rozendal, Rene A.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2010, 8 (10) : 706 - 716
  • [26] Extracellular electron transfer via microbial nanowires
    Reguera, G
    McCarthy, KD
    Mehta, T
    Nicoll, JS
    Tuominen, MT
    Lovley, DR
    [J]. NATURE, 2005, 435 (7045) : 1098 - 1101
  • [27] Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
    Rosenbaum, Miriam
    Aulenta, Federico
    Villano, Marianna
    Angenent, Largus T.
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (01) : 324 - 333
  • [28] A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
    Rotaru, Amelia-Elena
    Shrestha, Pravin Malta
    Liu, Fanghua
    Shrestha, Minita
    Shrestha, Devesh
    Embree, Mallory
    Zengler, Karsten
    Wardman, Colin
    Nevin, Kelly P.
    Lovley, Derek R.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) : 408 - 415
  • [29] A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes
    Schouten, K. J. P.
    Kwon, Y.
    van der Ham, C. J. M.
    Qin, Z.
    Koper, M. T. M.
    [J]. CHEMICAL SCIENCE, 2011, 2 (10) : 1902 - 1909
  • [30] Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis
    Siegert, Michael
    Yates, Matthew D.
    Call, Douglas F.
    Zhu, Xiuping
    Spormann, Alfred
    Logan, Bruce E.
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (04): : 910 - 917