On the existence and stability of periodic orbits in non ideal problems: General results

被引:20
作者
Dantas, Marcio Jose Horta [1 ]
Balthazar, Jose Manoel
机构
[1] Univ Fed Uberlandia, Fac Math, BR-38400902 Uberlandia, MG, Brazil
[2] Inst Geociencias & Cincias Exatas, Dept Estatstica &Cincias Exatas Math Aplicada & C, BR-13500230 Claro, SP, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2007年 / 58卷 / 06期
关键词
regular perturbation theory; periodic orbits; stability; bifurcation; Sommerfeld effect;
D O I
10.1007/s00033-006-5116-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. x = f (x) + epsilon g (x, t) + epsilon(2)(g) over cap (x, t, epsilon), where x is an element of Omega R-n, g,(g) over cap are T periodic functions of t and there is a(0) is an element of Omega such that f (a(0)) = 0 and f'(a(0)) is a nilpotent matrix. When n = 3 and f(x) = (0, q (x(3)), 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits.
引用
收藏
页码:940 / 958
页数:19
相关论文
共 12 条
[1]  
[Anonymous], 1974, Differential Equations, Dynamical Systems, and Linear Algebra
[2]  
Balthazar J.M., 2001, 6 C DYN SYST THEOR A
[3]   An overview on non-ideal vibrations [J].
Balthazar, JM ;
Mook, DT ;
Weber, HI ;
Brasil, RMLRF ;
Fenili, A ;
Belato, D ;
Felix, JLP .
MECCANICA, 2003, 38 (06) :613-621
[4]  
BALTHAZAR JM, 2004, DYNAMICAL SYSTEMS CO, V22
[5]   On the appearance of a Hopf bifurcation in a non-ideal mechanical problem [J].
Dantas, MJH ;
Balthazar, JM .
MECHANICS RESEARCH COMMUNICATIONS, 2003, 30 (05) :493-503
[6]  
DANTAS MJH, 2005, P 11 DINAME 28 FEBR
[7]  
GUCKENHEIMER J, 1985, NONLINEAR OSCILLATIO, V42
[8]   A comment on a nonideal centrifugal vibrator machine behavior with soft and hard springs [J].
Horta Dantas, Marcio Jose ;
Balthazar, Jose Manoel .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (04) :1083-1088
[9]  
KONONENKO VO, 1969, VIBRATING SYSTEMS LI
[10]  
Meirovitch L, 1970, METHODS ANAL DYNAMIC