Synthesis of N-Doped Porous Carbon/Carbon Micro-Nanotubes/NixCoyOz Nanosheets as a High-Capacity Electrode Material for Supercapacitors

被引:3
|
作者
Cong, Shaoling [1 ]
Yang, Yufei [3 ]
He, Fan [1 ]
Zhao, Jie [1 ]
Li, Kanshe [1 ]
Wang, Xiaoqin [1 ,2 ]
Xiong, Shanxin [1 ,2 ]
Wu, Yan [2 ]
Zhou, Anning [1 ,2 ]
机构
[1] Xian Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710054, Peoples R China
[2] Minist Nat Resources, Key Lab Coal Resources Explorat & Comprehens Util, Xian 710021, Peoples R China
[3] Shenmu Vocat & Tech Coll, Dept Chem Engn & Power Engn, Shenmu 719300, Peoples R China
来源
CHEMISTRYSELECT | 2021年 / 6卷 / 32期
基金
中国国家自然科学基金;
关键词
Carbon; Carbon micro-nanotubes; Electrochemistry; Nitrogen doping; Supercapacitors; COAL-BASED POLYANILINE; CARBON NANOTUBES; FACILE SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; GRAPHENE OXIDE; GROWTH; NANOCOMPOSITE; CATALYST; DEPOSITION; COMPOSITE;
D O I
10.1002/slct.202102400
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The N-doped porous carbon (NPC) /carbon micro-nanotubes (CMNT) /NixCoyOz nanosheets with rich mesopores and 1.37 wt% nitrogen doping are successfully synthesized by a pyrolysis-ionization-precipitation combination process, using coal-based polyaniline and nickelocene as original materials. Therein, most of the CMNT are upright CMTs and worm-like curved CNTs, and a few are bamboo-like tubes or carbon nanofibers. Moreover, many flower-like aggregates assembled by spinel NiCo2O4 nanosheets are anchored on the surface of the NPC and CMNT. The NPC/CMNT/NixCoyOz exhibits a high specific capacitance and cycling stability, attributed to the large BET specific surface area (485 m(2)/g), suitable BET average pore size (2.3 nm), good hydrophilicity and wettability, and synergistic effects among three components. The assembled NPC/CMNT/NixCoyOz//AC asymmetric supercapacitor also demonstres a high specific capacitance of 120 F g(-1) at a current density of 1 A g(-1) and a high energy density of 16.7 Wh kg(-1) at a power density of 500 W kg(-1).
引用
收藏
页码:8379 / 8390
页数:12
相关论文
共 50 条
  • [21] In Situ Growth of MnO2 Nanosheets on N-Doped Carbon Nanotubes Derived from Polypyrrole Tubes for Supercapacitors
    Ou, Xu
    Li, Qi
    Xu, Dan
    Guo, Jiangna
    Yan, Feng
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (05) : 545 - 551
  • [22] N-doped 3D porous carbon-graphene/polyaniline hybrid and N-doped porous carbon coated gC3N4 nanosheets for excellent energy density asymmetric supercapacitors
    Mangisetti, Sandhya Rani
    Kamaraj, M.
    Ramaprabhu, S.
    ELECTROCHIMICA ACTA, 2019, 305 : 264 - 277
  • [23] Self-Templated Synthesis of Hierarchically Porous N-Doped Carbon Derived from Biomass for Supercapacitors
    Wang, Yameng
    Liu, Ting
    Lin, Xiangjun
    Chen, Heng
    Chen, Shuai
    Jiang, Zhongjie
    Chen, Yan
    Liu, Jiang
    Huang, Jianlin
    Liu, Meilin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (11): : 13932 - 13939
  • [24] One-step synthesis of nitrogen-doped porous carbon for high performance supercapacitors
    Zhang, Jian-Qiang
    Li, Ping
    Huang, Si-Yun
    Wang, Bin
    Luo, He-Ming
    JOURNAL OF POROUS MATERIALS, 2017, 24 (05) : 1363 - 1373
  • [25] N-Doped Carbon Fibers Derived from Porous Wood Fibers Encapsulated in a Zeolitic Imidazolate Framework as an Electrode Material for Supercapacitors
    Zhang, Zhen
    Qing, Yan
    Wang, Delong
    Li, Lei
    Wu, Yiqiang
    MOLECULES, 2023, 28 (07):
  • [26] Synthesis of polypyrrole/nitrogen-doped porous carbon matrix composite as the electrode material for supercapacitors
    Feng, Minzhen
    Lu, Wei
    Zhou, Yun
    Zhen, Ranran
    He, Hongmei
    Wang, Ya
    Li, Chunmei
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [27] Molten-salt strategy for fabrication of hierarchical porous N-doped carbon nanosheets towards high-performance supercapacitors
    Lu, Xiangjun
    Zhang, Yong
    Zhong, Haichang
    Yang, Liang
    Xu, Xuecheng
    Liu, Hengzhou
    Yuan, Changzhou
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 230 : 178 - 186
  • [28] Synthesis and processing optimization of N-doped hierarchical porous carbon derived from corncob for high performance supercapacitors
    Song, Yang
    Qu, Wenwen
    He, Yuhang
    Yang, Hanxiao
    Du, Miao
    Wang, Aijuan
    Yang, Qing
    Chen, Yuanqing
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [29] N-Doped Graphene/Melamine Formaldehyde Composite Carbon Foam as a Binder-Free Electrode for Supercapacitors
    Zhang, Mei
    Wang, Le
    Jia, Yunming
    Jiang, Zhiguo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (09) : 5825 - 5830
  • [30] Facile synthesis of nitrogen-doped porous carbon as robust electrode for supercapacitors
    Mao, Zuxing
    Zhao, Shaobin
    Wang, Jing
    Zeng, Yinxiang
    Lu, Xihong
    Tong, Yexiang
    MATERIALS RESEARCH BULLETIN, 2018, 101 : 140 - 145