Deploying root microbiome of halophytes to improve salinity tolerance of crops

被引:9
作者
Akyol, Turgut Yigit [1 ]
Sato, Shusei [2 ]
Turkan, Ismail [1 ]
机构
[1] Ege Univ, Fac Sci, Dept Biol, Izmir, Turkey
[2] Tohoku Univ, Grad Sch Life Sci, Sendai, Miyagi 9808577, Japan
关键词
Halophytes; Microbiome manipulation; Salinity stress; Network analysis; Root microbiome; Sustainable agriculture; GROWTH-PROMOTING RHIZOBACTERIA; ARBUSCULAR MYCORRHIZAL FUNGI; PLANT-GROWTH; SALT TOLERANCE; PSEUDOMONAS-FLUORESCENS; SYSTEMIC RESISTANCE; BIOCONTROL; COMMUNITY; BACTERIA; SOIL;
D O I
10.1007/s11816-020-00594-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Salinization of the soils is one of the most prominent problems threatening global food security. Root microbiome engineering using biofertilizers provides a sustainable way to increase agricultural productivity. Halophytes, which are extremely salt-tolerant plants, can tolerate up to 1300 mM NaCl. Members of the halophytic root microbiome now provide a promising solution to meet the increased demand in the agricultural output. Here, we explore the members of this microbiome and explain the plant growth-promoting functions of them. We discuss the manipulation of the root microbiome with synthetic microbial communities including keystone microorganisms of the halophytic root microbiome. Importantly, we provide a simple method in R software to find these putative keystone taxa using network analysis. We believe this strategy will provide a valuable tool for future studies performing the combined investigation of the root bacteria and fungi of halophytes.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 88 条
[71]   Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth [J].
Tiwari, Shweta ;
Singh, Pratibha ;
Tiwari, Rameshwar ;
Meena, Kamlesh K. ;
Yandigeri, Mahesh ;
Singh, Dhananjaya P. ;
Arora, Dilip K. .
BIOLOGY AND FERTILITY OF SOILS, 2011, 47 (08) :907-916
[72]   Core microbiomes for sustainable agroecosystems [J].
Toju, Hirokazu ;
Peay, Kabir G. ;
Yamamichi, Masato ;
Narisawa, Kazuhiko ;
Hiruma, Kei ;
Naito, Ken ;
Fukuda, Shinji ;
Ushio, Masayuki ;
Nakaoka, Shinji ;
Onoda, Yusuke ;
Yoshida, Kentaro ;
Schlaeppi, Klaus ;
Bai, Yang ;
Sugiura, Ryo ;
Ichihashi, Yasunori ;
Minamisawa, Kiwamu ;
Kiers, E. Toby .
NATURE PLANTS, 2018, 4 (05) :247-257
[73]   ROS and RNS: key signalling molecules in plants [J].
Turkan, Ismail .
JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (14) :3313-3315
[74]   Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity [J].
Ullah, Sami ;
Bano, Asghari .
CANADIAN JOURNAL OF MICROBIOLOGY, 2015, 61 (04) :307-313
[75]  
Uzilday B., 2015, REACTIVE OXYGEN SPEC, P83, DOI DOI 10.1007/978-3-319-20421-5_4
[76]   Networking in the Plant Microbiome [J].
van der Heijden, Marcel G. A. ;
Hartmann, Martin .
PLOS BIOLOGY, 2016, 14 (02)
[77]   A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment [J].
van der Heijden, Marcel G. A. ;
de Bruin, Susanne ;
Luckerhoff, Ludo ;
van Logtestijn, Richard S. P. ;
Schlaeppi, Klaus .
ISME JOURNAL, 2016, 10 (02) :389-399
[78]   Mycorrhizal ecology and evolution: the past, the present, and the future [J].
van der Heijden, Marcel G. A. ;
Martin, Francis M. ;
Selosse, Marc-Andre ;
Sanders, Ian R. .
NEW PHYTOLOGIST, 2015, 205 (04) :1406-1423
[79]   Systemic resistance induced by rhizosphere bacteria [J].
van Loon, LC ;
Bakker, PAHM ;
Pieterse, CMJ .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1998, 36 :453-483
[80]  
Ventosa Antonio, 2008, V13, P87