Deploying root microbiome of halophytes to improve salinity tolerance of crops

被引:9
作者
Akyol, Turgut Yigit [1 ]
Sato, Shusei [2 ]
Turkan, Ismail [1 ]
机构
[1] Ege Univ, Fac Sci, Dept Biol, Izmir, Turkey
[2] Tohoku Univ, Grad Sch Life Sci, Sendai, Miyagi 9808577, Japan
关键词
Halophytes; Microbiome manipulation; Salinity stress; Network analysis; Root microbiome; Sustainable agriculture; GROWTH-PROMOTING RHIZOBACTERIA; ARBUSCULAR MYCORRHIZAL FUNGI; PLANT-GROWTH; SALT TOLERANCE; PSEUDOMONAS-FLUORESCENS; SYSTEMIC RESISTANCE; BIOCONTROL; COMMUNITY; BACTERIA; SOIL;
D O I
10.1007/s11816-020-00594-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Salinization of the soils is one of the most prominent problems threatening global food security. Root microbiome engineering using biofertilizers provides a sustainable way to increase agricultural productivity. Halophytes, which are extremely salt-tolerant plants, can tolerate up to 1300 mM NaCl. Members of the halophytic root microbiome now provide a promising solution to meet the increased demand in the agricultural output. Here, we explore the members of this microbiome and explain the plant growth-promoting functions of them. We discuss the manipulation of the root microbiome with synthetic microbial communities including keystone microorganisms of the halophytic root microbiome. Importantly, we provide a simple method in R software to find these putative keystone taxa using network analysis. We believe this strategy will provide a valuable tool for future studies performing the combined investigation of the root bacteria and fungi of halophytes.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 88 条
[1]  
Acquaah G., 2007, Principles of plant genetics and breeding, V1st ed.
[2]   Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation [J].
Agler, Matthew T. ;
Ruhe, Jonas ;
Kroll, Samuel ;
Morhenn, Constanze ;
Kim, Sang-Tae ;
Weigel, Detlef ;
Kemen, Eric M. .
PLOS BIOLOGY, 2016, 14 (01)
[3]  
Ahmad M, 2011, CAN J MICROBIOL, V57, P578, DOI [10.1139/W11-044, 10.1139/w11-044]
[4]   Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields [J].
Akyol, Turgut Yigit ;
Niwa, Rieko ;
Hirakawa, Hideki ;
Maruyama, Hayato ;
Sato, Takumi ;
Suzuki, Takae ;
Fukunaga, Ayako ;
Sato, Takashi ;
Yoshida, Shigenobu ;
Tawaraya, Keitaro ;
Saito, Masanori ;
Ezawa, Tatsuhiro ;
Sato, Shusei .
MICROBES AND ENVIRONMENTS, 2019, 34 (01) :23-32
[5]   Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress [J].
Ashraf, M ;
Hasnain, S ;
Berge, O ;
Mahmood, T .
BIOLOGY AND FERTILITY OF SOILS, 2004, 40 (03) :157-162
[6]   Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis [J].
Auge, Robert M. ;
Toler, Heather D. ;
Saxton, Arnold M. .
FRONTIERS IN PLANT SCIENCE, 2014, 5
[7]   Carbon metabolism and transport in arbuscular mycorrhizas [J].
Bago, B ;
Pfeffer, PE ;
Shachar-Hill, Y .
PLANT PHYSIOLOGY, 2000, 124 (03) :949-957
[8]   Keystone taxa as drivers of microbiome structure and functioning [J].
Banerjee, Samiran ;
Schlaeppi, Klaus ;
van der Heijden, Marcel G. A. .
NATURE REVIEWS MICROBIOLOGY, 2018, 16 (09) :567-576
[9]   Pseudomonas fluorescens F113 Mutant with Enhanced Competitive Colonization Ability and Improved Biocontrol Activity against Fungal Root Pathogens [J].
Barahona, Emma ;
Navazo, Ana ;
Martinez-Granero, Francisco ;
Zea-Bonilla, Teresa ;
Maria Perez-Jimenez, Rosa ;
Martin, Marta ;
Rivilla, Rafael .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (15) :5412-5419
[10]   Using network analysis to explore co-occurrence patterns in soil microbial communities [J].
Barberan, Albert ;
Bates, Scott T. ;
Casamayor, Emilio O. ;
Fierer, Noah .
ISME JOURNAL, 2012, 6 (02) :343-351