ON SOME GENERALIZATION OF SPECIAL AFFINE HYPERSPHERES

被引:2
|
作者
Szancer, Michal [1 ]
机构
[1] Gornikow St 21-1, PL-30819 Krakow, Poland
关键词
affine hypersurface; special hypersphere; almost symplectic structure; SPECIAL KAHLER-MANIFOLDS;
D O I
10.4064/cm6815-10-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the notion of special affine hypersphere. We study basic properties of such hyperspheres and give several examples. We also give a method of constructing higher-dimensional special hyperspheres using lower-dimensional examples.
引用
收藏
页码:239 / 256
页数:18
相关论文
共 50 条
  • [11] On Para-Complex Affine Hyperspheres
    Szancer, Zuzanna
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 491 - 513
  • [12] Calabi Conjecture on Hyperbolic Affine Hyperspheres
    Li Anmin
    四川大学学报(自然科学版), 1988, (04) : 505 - 506
  • [13] J-Tangent Affine Hyperspheres
    Szancer, Zuzanna
    RESULTS IN MATHEMATICS, 2014, 66 (3-4) : 481 - 490
  • [14] CALABI CONJECTURE ON HYPERBOLIC AFFINE HYPERSPHERES
    LI, AM
    MATHEMATISCHE ZEITSCHRIFT, 1990, 203 (03) : 483 - 491
  • [15] J-Tangent Affine Hyperspheres
    Zuzanna Szancer
    Results in Mathematics, 2014, 66 : 481 - 490
  • [16] On Para-Complex Affine Hyperspheres
    Zuzanna Szancer
    Results in Mathematics, 2017, 72 : 491 - 513
  • [17] Characterizations of the Calabi product of hyperbolic affine hyperspheres
    Hu, Zejun
    Li, Haizhong
    Vrancken, Luc
    RESULTS IN MATHEMATICS, 2008, 52 (3-4) : 299 - 314
  • [18] On product affine hyperspheres in ℝn+1
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    Science China Mathematics, 2020, 63 : 2055 - 2078
  • [19] On product affine hyperspheres in Rn+1
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    ScienceChina(Mathematics), 2020, 63 (10) : 2055 - 2078
  • [20] Characterizations of the Calabi Product of Hyperbolic Affine Hyperspheres
    Zejun Hu
    Haizhong Li
    Luc Vrancken
    Results in Mathematics, 2008, 52 : 299 - 314