UNIQUENESS OF LIMIT CYCLES FOR QUADRATIC VECTOR FIELDS

被引:2
作者
Luis Bravo, Jose [1 ]
Fernandez, Manuel [1 ]
Ojeda, Ignacio [1 ]
Sanchez, Fernando [1 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz 06006, Spain
关键词
Abel equation; closed solution; periodic solution; limit cycle; algebraic variety; ABEL EQUATIONS; PERIODIC-SOLUTIONS; DIFFERENTIAL-EQUATIONS; 2-DIMENSIONAL SYSTEMS; NUMBER;
D O I
10.3934/dcds.2019020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the study of the number of limit cycles surrounding a critical point of a quadratic planar vector field, which, in normal form, can be written as x' = a(1)x - y - a(3)x(2 )+ (2a(2 )+ a(5))xy + a6y(2), y' = x+a(1)y+a(2)x(2) +(2a(3)+a(4))xy-a(2)y(2). In particular, we study the semi-varieties defined in terms of the parameters a(1), a(2),..., a(6) where some classical criteria for the associated Abel equation apply. The proofs will combine classical ideas with tools from computational algebraic geometry.
引用
收藏
页码:483 / 502
页数:20
相关论文
共 50 条
[41]   THE UNIQUENESS OF LIMIT CYCLE OF QUADRATIC SYSTEM(Ⅱ)m=0 [J].
张平光 .
ChineseScienceBulletin, 1990, (05) :360-365
[42]   A METHOD PROVING THE UNIQUENESS OF THE LIMIT CYCLE OF THE QUADRATIC SYSTEM [J].
徐思林 ;
朱豫根 .
ANNALS OF DIFFERENTIAL EQUATIONS, 1996, (02) :226-228
[43]   On the number of limit cycles which appear by perturbation of Hamiltonian two-saddle cycles of planar vector fields [J].
Gavrilov, Lubomir .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (01) :1-23
[44]   On the number of limit cycles which appear by perturbation of Hamiltonian two-saddle cycles of planar vector fields [J].
Lubomir Gavrilov .
Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 :1-23
[45]   Limit cycles near hyperbolas in quadratic systems [J].
Artes, Joan C. ;
Dumortier, Freddy ;
Llibre, Jaurne .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :235-260
[46]   On the limit cycles of aeroelastic systems with quadratic nonlinearities [J].
Chen, Y. M. ;
Liu, J. K. .
STRUCTURAL ENGINEERING AND MECHANICS, 2008, 30 (01) :67-76
[47]   Bifurcation of limit cycles in Z10-equivariant vector fields of degree 9 [J].
Wang, Sharon ;
Yu, Pei ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08) :2309-2324
[48]   LIMIT CYCLES OF LINEAR VECTOR FIELDS ON (S2)m x Rn [J].
Cufi-Cabre, Clara ;
Llibre, Jaume .
PACIFIC JOURNAL OF MATHEMATICS, 2023, 324 (02) :249-263
[49]   Alien limit cycles in Abel equations [J].
Alvarez, M. J. ;
Bravo, J. L. ;
Fernandez, M. ;
Prohens, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
[50]   Limit Cycles Generated by Perturbing a Kind of Quadratic Reversible Center of a Piecewise Polynomial Differential System [J].
Si, Zheng ;
Zhao, Liqin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025, 35 (06)