UNIQUENESS OF LIMIT CYCLES FOR QUADRATIC VECTOR FIELDS

被引:2
|
作者
Luis Bravo, Jose [1 ]
Fernandez, Manuel [1 ]
Ojeda, Ignacio [1 ]
Sanchez, Fernando [1 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz 06006, Spain
关键词
Abel equation; closed solution; periodic solution; limit cycle; algebraic variety; ABEL EQUATIONS; PERIODIC-SOLUTIONS; DIFFERENTIAL-EQUATIONS; 2-DIMENSIONAL SYSTEMS; NUMBER;
D O I
10.3934/dcds.2019020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with the study of the number of limit cycles surrounding a critical point of a quadratic planar vector field, which, in normal form, can be written as x' = a(1)x - y - a(3)x(2 )+ (2a(2 )+ a(5))xy + a6y(2), y' = x+a(1)y+a(2)x(2) +(2a(3)+a(4))xy-a(2)y(2). In particular, we study the semi-varieties defined in terms of the parameters a(1), a(2),..., a(6) where some classical criteria for the associated Abel equation apply. The proofs will combine classical ideas with tools from computational algebraic geometry.
引用
收藏
页码:483 / 502
页数:20
相关论文
共 50 条
  • [1] Uniqueness of limit cycles of quadratic system (Ⅲ) m=0
    ZHANG Xiang and YE Qin1.Department of Mathematics
    2. Department of Applied Mathematics
    ChineseScienceBulletin, 1997, (08) : 628 - 631
  • [2] Vector fields with homogeneous nonlinearities and many limit cycles
    Gasull, Armengol
    Yu, Jiang
    Zhang, Xiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (09) : 3286 - 3303
  • [3] Limit cycles of discontinuous piecewise polynomial vector fields
    de Carvalho, Tiago
    Llibre, Jaume
    Tonon, Durval Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 572 - 579
  • [4] Uniqueness of limit cycles of quadratic system (III)(m=0)
    Zhang, X
    Ye, Q
    CHINESE SCIENCE BULLETIN, 1997, 42 (08): : 628 - 631
  • [5] Bifurcations of limit cycles in equivariant quintic planar vector fields
    Zhao, Liqin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 352 - 375
  • [6] Limit cycles of linear vector fields on manifolds
    Llibre, Jaume
    Zhang, Xiang
    NONLINEARITY, 2016, 29 (10) : 3120 - 3131
  • [7] A uniqueness criterion of limit cycles for planar polynomial systems with homogeneous nonlinearities
    Huang, Jianfeng
    Liang, Haihua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 498 - 521
  • [8] Twelve Limit Cycles in 3D Quadratic Vector Fields with Z3 Symmetry
    Guo, Laigang
    Yu, Pei
    Chen, Yufu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (11):
  • [9] Limit cycles, invariant meridians and parallels for polynomial vector fields on the torus
    Llibre, Jaume
    Medrado, Joao C.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (01): : 1 - 9
  • [10] THE LIMIT CYCLES OF A CLASS OF QUINTIC POLYNOMIAL VECTOR FIELDS
    Llibre, Jaume
    Salhi, Tayeb
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 141 - 151