Integrability study on a generalized (2+1)-dimensional variable-coefficient Gardner model with symbolic computation

被引:23
|
作者
Lue, Xing [1 ]
Tian, Bo [1 ,2 ,3 ]
Zhang, Hai-Qiang [1 ]
Xu, Tao [1 ]
Li, He [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Key Lab Informat Photon & Opt Commun, Minist Educ, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; DE-VRIES EQUATION; NONLINEAR SCHRODINGER-EQUATION; INTERNAL SOLITARY WAVES; BACKLUND TRANSFORMATION; MULTISOLITON SOLUTIONS; EVOLUTION-EQUATIONS; BOUSSINESQ MODEL; PLASMA PHYSICS; DUSTY PLASMA;
D O I
10.1063/1.3494154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Gardner model describes certain nonlinear elastic structures, ion-acoustic waves in plasmas, and shear flows in ocean and atmosphere. In this paper, by virtue of the computerized symbolic computation, the integrability of a generalized (2+1)-dimensional variable-coefficient Gardner model is investigated. Painleve integrability conditions are derived among the coefficient functions, which reduce all the coefficient functions to be proportional only to gamma(t), the coefficient of the cubic nonlinear term u(2)u(x). Then, an independent transformation of the variable t transforms the reduced gamma(t)-dependent equation into a constant-coefficient integrable one. Painleve test shows that this is the only case when our original generalized (2+1)-dimensional variable-coefficient Gardner model is integrable. (C) 2010 American Institute of Physics. [doi:10.1063/1.3494154]
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Solitons and integrability for a (2+1)-dimensional generalized variable-coefficient shallow water wave equation
    Wang, Ya-Le
    Gao, Yi-Tian
    Jia, Shu-Liang
    Lan, Zhong-Zhou
    Deng, Gao-Fu
    Su, Jing-Jing
    MODERN PHYSICS LETTERS B, 2017, 31 (03):
  • [2] Symbolic computation on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for the water waves
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [3] ANALYTIC ANALYSIS ON A GENERALIZED (2+1)-DIMENSIONAL VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION USING SYMBOLIC COMPUTATION
    Zhang, Cheng
    Tian, Bo
    Li, Li-Li
    Xu, Tao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (27): : 5359 - 5370
  • [4] Integrability and Exact Solutions for a (2+1)-dimensional Variable-Coefficient KdV Equation
    Zhang Yu
    Xu Gui-Qiong
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 646 - 658
  • [5] In plasma physics and fluid dynamics: Symbolic computation on a (2+1)-dimensional variable-coefficient Sawada-Kotera system
    Gao, Xin-Yi
    APPLIED MATHEMATICS LETTERS, 2025, 159
  • [6] On a variable-coefficient modified KP equation and a generalized variable-coefficient KP equation with computerized symbolic computation
    Gao, YT
    Tian, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (06): : 819 - 833
  • [7] Solitonic interaction of a variable-coefficient (2+1)-dimensional generalized breaking soliton equation
    Qin, Yi
    Gao, Yi-Tian
    Shen, Yu-Jia
    Sun, Yu-Hao
    Meng, Gao-Qing
    Yu, Xin
    PHYSICA SCRIPTA, 2013, 88 (04)
  • [8] Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer Kaup system in water waves
    Zhao, Xue-Hui
    Tian, Bo
    Guo, Yong-Jiang
    Li, Hui-Min
    MODERN PHYSICS LETTERS B, 2018, 32 (08):
  • [9] Soliton Solutions for a Generalized Inhomogeneous Variable-Coefficient Hirota Equation with Symbolic Computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Li, Min
    Sun, Kun
    STUDIES IN APPLIED MATHEMATICS, 2010, 125 (02) : 213 - 222
  • [10] DIFFERENTIAL INVARIANTS OF A GENERALIZED VARIABLE-COEFFICIENT GARDNER EQUATION
    de la Rosa, Rafael
    Santos Bruzon, Maria
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (04): : 747 - 757