Action recognition using edge trajectories and motion acceleration descriptor

被引:13
作者
Wang, Xiaofang [1 ,2 ]
Qi, Chun [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
[2] Qilu Univ Technol, Sch Elect Engn & Automat, Jinan 250353, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Edge trajectories; Motion acceleration histogram; SPATIOTEMPORAL CONTEXT; FEATURES; CLASSIFICATION; VIDEOS;
D O I
10.1007/s00138-016-0746-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for action recognition based on edge trajectories. First, to exploit long-term motion information for action representation more effectively, we propose to track edge points across video frames to extract spatiotemporal edge trajectories and use the ones derived from the edge points located on the boundaries of action-related area to describe actions. Second, besides the existing shape, histogram of oriented gradients, histogram of optical flow and motion boundary histogram, a new trajectory descriptor named histogram of motion acceleration is introduced, which is computed using the temporal derivative of the optical flow in the spatiotemporal neighborhood centered along a trajectory and describes the temporal relative motion of actions. Finally, using Fisher vector to encode trajectory descriptors and MKL-based multi-class SVM to predict action labels, we evaluate the proposed approach on seven benchmark datasets, namely KTH, ADL, UT-Interaction, UCF sports, YouTube, HMDB51 and UCF101. The experimental results demonstrate the effectiveness of our method.
引用
收藏
页码:861 / 875
页数:15
相关论文
共 56 条
  • [1] Human Activity Analysis: A Review
    Aggarwal, J. K.
    Ryoo, M. S.
    [J]. ACM COMPUTING SURVEYS, 2011, 43 (03)
  • [2] [Anonymous], CRCVTR1201 UCF
  • [3] [Anonymous], ARXIV14054506
  • [4] [Anonymous], P IEEE C COMP VIS PA
  • [5] [Anonymous], BOUND VALUE PROBL
  • [6] [Anonymous], P BRIT MACH VIS C BM
  • [7] [Anonymous], P IEEE INT C COMP VI
  • [8] Informative patches sampling for image classification by utilizing bottom-up and top-down information
    Bai, Shuang
    Matsumoto, Tetsuya
    Takeuchi, Yoshinori
    Kudo, Hiroaki
    Ohnishi, Noboru
    [J]. MACHINE VISION AND APPLICATIONS, 2013, 24 (05) : 959 - 970
  • [9] Effective Codebooks for Human Action Representation and Classification in Unconstrained Videos
    Ballan, Lamberto
    Bertini, Marco
    Del Bimbo, Alberto
    Seidenari, Lorenzo
    Serra, Giuseppe
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2012, 14 (04) : 1234 - 1245
  • [10] Fusing appearance and distribution information of interest points for action recognition
    Bregonzio, Matteo
    Xiang, Tao
    Gong, Shaogang
    [J]. PATTERN RECOGNITION, 2012, 45 (03) : 1220 - 1234