Copper and cadmium adsorption on pellets made from fired coal fly ash

被引:165
作者
Papandreou, A.
Stournaras, C. J.
Panias, D.
机构
[1] Natl Tech Univ Athens, Sch Min & Met Engn, Met Lab, Athens 15780, Greece
[2] CERECO SA Ceram & Refractories Technol Dev Co, Chalkida 34100, Greece
关键词
fly ash; adsorption; copper and cadmium removal kinetics; adsorption isotherms; desorption;
D O I
10.1016/j.jhazmat.2007.03.020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Studies on the utilization of low cost adsorbents for removal of heavy metals from wastewaters are gaining attention. Fired coal fly ash, a solid by-product that is produced in power plants worldwide in million of tonnes, has attracted researchers' interest. In this work, fly ash was shaped into pellets that have diameter in-between 3-8 mm, high relative porosity and very good mechanical strength. The pellets were used in adsorption experiments for the removal of copper and cadmium ions from aqueous solutions. The effect of agitation rate, equilibration time, pH of solution and initial metal concentration were studied. The adsorption of both cations follows pseudo-second order kinetics reaching equilibrium after an equilibration time of 72 h. The experimental results for copper and cadmium adsorption fit well to a Langmuirian type isotherm. The calculated adsorption capacities of pellets for copper and cadmium were 20.92 and 18.98 mg/g, respectively. Desorption experiments were performed in several extraction media. The results showed that both metals were desorbed substantially from pellets under acidic solutions. For this reason, metal saturated pellets were encapsulated in concrete blocks synthesized from cement and raw pulverized fly ash in order to avoid metal desorption. The heavy metals immobilization after encapsulation in concrete blocks was tested through desorption tests in several aqueous media. The results showed that after 2 months in acidic media with pH 2.88 and 4.98 neither copper nor cadmium were desorbed thus indicating excellent stabilization of heavy metals in the concrete matrix. As a conclusion, the results showed that fly ash shaped into pellets could be considered as a potential adsorbent for the removal of copper and cadmium from wastewaters. Moreover, the paper proposes an efficient and simple stabilization process of the utilized adsorbents thus guarantying their safe disposal in industrial landfills and eliminating the risk of pollution for groundwater and other natural water receivers. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:538 / 547
页数:10
相关论文
共 33 条
[1]   A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents [J].
Aksu, Z ;
Yener, J .
WASTE MANAGEMENT, 2001, 21 (08) :695-702
[2]   Heavy metal cation retention by unconventional sorbents (red muds and fly ashes) [J].
Apak, R ;
Tütem, E ;
Hügül, M ;
Hizal, J .
WATER RESEARCH, 1998, 32 (02) :430-440
[3]   Low-cost adsorbents for heavy metals uptake from contaminated water: a review [J].
Babel, S ;
Kurniawan, TA .
JOURNAL OF HAZARDOUS MATERIALS, 2003, 97 (1-3) :219-243
[4]  
Baes C.F., 1976, HYDROLYSIS CATIONS
[5]   A review of potentially low-cost sorbents for heavy metals [J].
Bailey, SE ;
Olin, TJ ;
Bricka, RM ;
Adrian, DD .
WATER RESEARCH, 1999, 33 (11) :2469-2479
[6]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[7]   Comparative study of adsorption properties of Turkish fly ashes I. The case of nickel(II), copper(II) and zinc(II) [J].
Bayat, B .
JOURNAL OF HAZARDOUS MATERIALS, 2002, 95 (03) :251-273
[8]   Utilization of fly ash by pelletization process;: theory, application areas and research results [J].
Baykal, G ;
Döven, AG .
RESOURCES CONSERVATION AND RECYCLING, 2000, 30 (01) :59-77
[9]   Self-compacting concrete incorporating high volumes of class F fly ash -: Preliminary results [J].
Bouzoubaâ, N ;
Lachemi, M .
CEMENT AND CONCRETE RESEARCH, 2001, 31 (03) :413-420
[10]   Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview [J].
Chuah, TG ;
Jumasiah, A ;
Azni, I ;
Katayon, S ;
Choong, SYT .
DESALINATION, 2005, 175 (03) :305-316