Phase Transition of the Ising Model on a Hyperbolic Lattice

被引:18
作者
Iharagi, Takatsugu [1 ]
Gendiar, Andrej [2 ,3 ]
Ueda, Hiroshi [4 ]
Nishino, Tomotoshi [1 ]
机构
[1] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
[2] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
[3] Slovak Acad Sci, Inst Phys, SK-84511 Bratislava, Slovakia
[4] Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Osaka 5608531, Japan
关键词
DMRG; CTMRG; hyperbolic; entanglement; MATRIX RENORMALIZATION-GROUP; CLASSICAL-MODELS; FORMULATION;
D O I
10.1143/JPSJ.79.104001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The matrix product structure is considered on a regular lattice in the hyperbolic plane. The phase transition of the Ising model is observed on the hyperbolic (5,4)-lattice by means of the corner-transfer-matrix renormalization group (CTMRG) method. Calculated correlation length is always finite even at the transition temperature, where mean-field like behavior is observed. The entanglement entropy is also always finite.
引用
收藏
页数:4
相关论文
共 50 条
[41]   Spin nonclassicality and quantum phase transition in the XY spin model [J].
Dai, Hao ;
Fu, Shuangshuang ;
Luo, Shunlong .
PHYSICA SCRIPTA, 2020, 95 (10)
[42]   Statistical mechanics of the cluster Ising model [J].
Smacchia, Pietro ;
Amico, Luigi ;
Facchi, Paolo ;
Fazio, Rosario ;
Florio, Giuseppe ;
Pascazio, Saverio ;
Vedral, Vlatko .
PHYSICAL REVIEW A, 2011, 84 (02)
[43]   GLOBAL QUANTUM CORRELATIONS IN THE ISING MODEL [J].
Campbell, Steve ;
Mazzola, Laura ;
Paternostro, Mauro .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 (7-8) :1685-1699
[44]   Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows [J].
Yuan, Xiaolei ;
Liang, Hong ;
Chai, Zhenhua ;
Shi, Baochang .
PHYSICAL REVIEW E, 2020, 101 (06)
[45]   Quantum correlation and phase transitions in a two-dimensional doubly decorated Ising-Heisenberg model [J].
Sun, Z-Y. ;
Li, L. ;
Li, N. ;
Yao, K-L. ;
Liu, J. ;
Luo, B. ;
Du, G-H. ;
Li, H-N. .
EPL, 2011, 95 (03)
[46]   Information measures for a local quantum phase transition: Lattice fermions in a one-dimensional harmonic trap [J].
Zhang, Yicheng ;
Vidmar, Lev ;
Rigol, Marcos .
PHYSICAL REVIEW A, 2018, 97 (02)
[47]   Quantum Phase Transition and Quantum Correlation in the Two-dimensional Honeycomb-bilayer Lattice Antiferromagnet [J].
Lima, L. S. .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2021, 205 (3-4) :112-125
[48]   Observation of Two-Dimensional Mott Insulator and π-Superfluid Quantum Phase Transition in Shaking Optical Lattice [J].
Sun, Jingxin ;
Zhao, Pengju ;
Hu, Zhongshu ;
Jin, Shengjie ;
Liao, Ren ;
Liu, Xiong-Jun ;
Chen, Xuzong .
CHINESE PHYSICS LETTERS, 2023, 40 (08)
[49]   The metal-insulator transition in the half-filled extended Hubbard model on a triangular lattice [J].
Gao, Jiming ;
Wang, Jiaxiang .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (48)
[50]   Existence of the 1/2 magnetization plateau in the S=1 Ising model with single-ion anisotropy on Z=3 Bethe lattice [J].
Liu, Guang-Hua ;
Li, Wei ;
Deng, Xiao-Yan ;
Su, Gang ;
Tian, Guang-Shan .
SOLID STATE COMMUNICATIONS, 2014, 180 :1-6