Direct Thermal Annealing Synthesis of Ordered Pt Alloy Nanoparticles Coated with a Thin N-Doped Carbon Shell for the Oxygen Reduction Reaction

被引:84
作者
He, Suqiong [1 ,2 ]
Liu, Yang [1 ]
Zhan, Hongbing [2 ]
Guan, Lunhui [1 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Design & Assembly Funct Nanostruct, Fujian Key Lab Nanomat, Fujian Inst Res Struct Matter, Fuzhou 350002, Fujian, Peoples R China
[2] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen reduction reaction; highly ordered Pt alloy nanoparticles; direct thermal annealing synthesis; N-doped carbon shell; single-wall carbon nanohorns; FEPT NANOPARTICLES; CATHODE CATALYST; FUEL-CELLS; NITROGEN; DURABILITY; ELECTROCATALYST; L1(0)-FEPT; NANOHORNS;
D O I
10.1021/acscatal.1c02434
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ordered Pt alloy electrocatalysts supported on carbon nanomaterials have attracted widespread attention, especially for the oxygen reduction reaction (ORR), due to the catalytic performance derived from their unique electronic and geometric structures. However, it is still urgent to fabricate uniform and structurally ordered Pt alloy electrocatalysts based on simple methods. Herein, a two-step direct annealing method was applied to synthesize uniform and ordered PtFe alloy nanoparticles loaded on single-wall carbon nanohorns (SWCNHs) under the protection of a thin N-doped carbon (NC) shell, which was in situ generated from the polymerization and pyrolysis of a small organic ligand, namely, aniline, during the first annealing treatment. After the second annealing treatment in a H-2 atmosphere for 9 h, the obtained sample, denoted as PtFe@NC/SWCNHs(H-2-9h), exhibited uniform and ordered PtFe nanoparticles with a face-centered tetragonal (fct) structure (ordered degree: >80%, mean size: similar to 5.2 nm) on the graphitic SWCNH support. Without removing the NC shell, the PtFe@NC/SWCNHs(H-2-9h) sample showed mass activity (1.53 A/mg(Pt) at 0.9 V) and specific activity (3.61 mA/cm(2) at 0.9 V) toward the ORR due to the enhanced electronic interaction derived from the ordered fct-PtFe structure. Importantly, it still retained high catalytic activity after a long-term stability test, mainly owing to the ordered fct-PtFe structure and the protection of the NC shell, which provides strong resistance toward the Fe leaching and nanoparticle aggregation, respectively. The presented strategy is generalized to fabricate different ordered PtM or Pt3M (M = Fe/Co) alloy electrocatalysts.
引用
收藏
页码:9355 / 9365
页数:11
相关论文
共 48 条
[1]   Iron-containing platinum-based catalysts as cathode and anode materials for low-temperature acidic fuel cells: a review [J].
Antolini, Ermete .
RSC ADVANCES, 2016, 6 (04) :3307-3325
[2]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414
[3]   Coalescence in the Thermal Annealing of Nanoparticles: An in Situ STEM Study of the Growth Mechanisms of Ordered Pt-Fe Nanoparticles in a KCl Matrix [J].
Chen, Hao ;
Yu, Yingchao ;
Xin, Huolin L. ;
Newton, Kathryn A. ;
Holtz, Megan E. ;
Wang, Deli ;
Muller, David A. ;
Abruna, Hector D. ;
DiSalvo, Francis J. .
CHEMISTRY OF MATERIALS, 2013, 25 (08) :1436-1442
[4]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[5]   Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction [J].
Chung, Dong Young ;
Jun, Samuel Woojoo ;
Yoon, Gabin ;
Kwon, Soon Gu ;
Shin, Dong Yun ;
Seo, Pilseon ;
Yoo, Ji Mun ;
Shin, Heejong ;
Chung, Young-Hoon ;
Kim, Hyunjoong ;
Mun, Bongjin Simon ;
Lee, Kug-Seung ;
Lee, Nam-Suk ;
Yoo, Sung Jong ;
Lim, Dong-Hee ;
Kang, Kisuk ;
Sung, Yung-Eun ;
Hyeon, Taeghwan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (49) :15478-15485
[6]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[7]   Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability [J].
Du, Xin Xin ;
He, Yang ;
Wang, Xiao Xia ;
Wang, Jian Nong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (08) :2623-2632
[8]   Efficient Catalytic System for Synthesis of trans-Stilbene from Diphenylacetylene Using Rh-Based Intermetallic Compounds [J].
Furukawa, Shinya ;
Yokoyama, Akira ;
Komatsu, Takayuki .
ACS CATALYSIS, 2014, 4 (10) :3581-3585
[9]   Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance [J].
Gamler, Jocelyn T. L. ;
Ashberry, Hannah M. ;
Skrabalak, Sara E. ;
Koczkur, Kallum M. .
ADVANCED MATERIALS, 2018, 30 (40)
[10]   High temperature self-assembly one-step synthesis of a structurally ordered PtFe catalyst for the oxygen reduction reaction [J].
Gao, Xiaoyan ;
Chen, Siguo ;
Deng, Jianghai ;
Ibraheem, Shumaila ;
Li, Jia ;
Zhou, Qiuyun ;
Lan, Huiying ;
Zou, Xiao ;
Wei, Zidong .
CHEMICAL COMMUNICATIONS, 2019, 55 (80) :12028-12031