Numerically stable generation of correlation matrices and their factors

被引:73
作者
Davies, PI [1 ]
Higham, NJ [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
random correlation matrix; Bendel-Mickey algorithm; eigenvalues; singular value decomposition; test matrices; forward error bounds; relative error bounds; IMSL; NAG Library; Jacobi method;
D O I
10.1023/A:1022384216930
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Correlation matrices-symmetric positive semidefinite matrices with unit diagonal-are important in statistics and in numerical linear algebra. For simulation and testing it is desirable to be able to generate random correlation matrices with specified eigenvalues (which must be nonnegative and sum to the dimension of the matrix). A popular algorithm of Bendel and Mickey takes a matrix having the specified eigenvalues and uses a finite sequence of Givens rotations to introduce Is on the diagonal. We give improved formulae for computing the rotations and prove that the resulting algorithm is numerically stable. We show by example that the formulae originally proposed, which are used in certain existing Fortran implementations, can lead to serious instability. We also show how to modify the algorithm to generate a rectangular matrix with columns of unit 2-norm. Such a matrix represents a correlation matrix in factored form, which can be preferable to representing the matrix itself, for example when the correlation matrix is nearly singular to working precision.
引用
收藏
页码:640 / 651
页数:12
相关论文
共 31 条