Dynamic time series smoothing for symbolic interval data applied to neuroscience

被引:7
|
作者
Nascimento, Diego C. [1 ]
Pimentel, Bruno [1 ]
Souza, Renata [2 ]
Leite, Joao P. [3 ]
Edwards, Dylan J. [4 ,5 ]
Santos, Taiza E. G. [3 ]
Louzada, Francisco [1 ]
机构
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, Brazil
[4] Moss Rehabil Res Inst, Elkins Pk, PA USA
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia
基金
巴西圣保罗研究基金会;
关键词
State space model; Symbolic data analysis; Verticality perception; LINEAR-REGRESSION; ROBUST REGRESSION; MODELS;
D O I
10.1016/j.ins.2019.12.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [41] LogicGep: Boolean networks inference using symbolic regression from time-series transcriptomic profiling data
    Zhang, Dezhen
    Gao, Shuhua
    Liu, Zhi-Ping
    Gao, Rui
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [42] Prediction regions for interval-valued time series
    Gonzalez-Rivera, Gloria
    Luo, Yun
    Ruiz, Esther
    JOURNAL OF APPLIED ECONOMETRICS, 2020, 35 (04) : 373 - 390
  • [43] Forecasting models for interval-valued time series
    Maia, Andre Luis S.
    de Carvalho, Francisco de A. T.
    Ludermir, Teresa B.
    NEUROCOMPUTING, 2008, 71 (16-18) : 3344 - 3352
  • [44] Interval time series forecasting: A systematic literature review
    Wang, Piao
    Gurmani, Shahid Hussain
    Tao, Zhifu
    Liu, Jinpei
    Chen, Huayou
    JOURNAL OF FORECASTING, 2024, 43 (02) : 249 - 285
  • [45] Monitoring photochemical pollutants based on symbolic interval-valued data analysis
    Liang-Ching Lin
    Meihui Guo
    Sangyeol Lee
    Advances in Data Analysis and Classification, 2023, 17 : 897 - 926
  • [46] Symbolic Covariance Principal Component Analysis and Visualization for Interval-Valued Data
    Le-Rademacher, Jennifer
    Billard, Lynne
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (02) : 413 - 432
  • [47] Centre and Range method for fitting a linear regression model to symbolic interval data
    Lima Neto, Eufrasio de A.
    de Carvalho, Francisco de A. T.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1500 - 1515
  • [48] Monitoring photochemical pollutants based on symbolic interval-valued data analysis
    Lin, Liang-Ching
    Guo, Meihui
    Lee, Sangyeol
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2023, 17 (04) : 897 - 926
  • [49] Partitional clustering algorithms for symbolic interval data based on single adaptive distances
    De Carvalho, Francisco de A. T.
    Lechevallier, Yves
    PATTERN RECOGNITION, 2009, 42 (07) : 1223 - 1236
  • [50] A General Regression Changepoint Test for Time Series Data
    Robbins, Michael W.
    Gallagher, Colin M.
    Lund, Robert B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 670 - 683