Dynamic time series smoothing for symbolic interval data applied to neuroscience
被引:7
|
作者:
Nascimento, Diego C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, BrazilUniv Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
Nascimento, Diego C.
[1
]
Pimentel, Bruno
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, BrazilUniv Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
Pimentel, Bruno
[1
]
Souza, Renata
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Pernambuco, Ctr Informat, Recife, PE, BrazilUniv Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
Souza, Renata
[2
]
Leite, Joao P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, BrazilUniv Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
Leite, Joao P.
[3
]
Edwards, Dylan J.
论文数: 0引用数: 0
h-index: 0
机构:
Moss Rehabil Res Inst, Elkins Pk, PA USA
Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, AustraliaUniv Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
Edwards, Dylan J.
[4
,5
]
Santos, Taiza E. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, BrazilUniv Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
Santos, Taiza E. G.
[3
]
Louzada, Francisco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, BrazilUniv Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
Louzada, Francisco
[1
]
机构:
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, Brazil
[4] Moss Rehabil Res Inst, Elkins Pk, PA USA
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia
State space model;
Symbolic data analysis;
Verticality perception;
LINEAR-REGRESSION;
ROBUST REGRESSION;
MODELS;
D O I:
10.1016/j.ins.2019.12.026
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data. (C) 2019 Elsevier Inc. All rights reserved.
机构:
Hong Kong Univ Sci & Technol, Dept Informat Syst Business Stat & Operat Managem, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Informat Syst Business Stat & Operat Managem, Kowloon, Hong Kong, Peoples R China
So, Mike K. P.
Chung, Ray S. W.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Informat Syst Business Stat & Operat Managem, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Informat Syst Business Stat & Operat Managem, Kowloon, Hong Kong, Peoples R China