Dynamic time series smoothing for symbolic interval data applied to neuroscience

被引:7
|
作者
Nascimento, Diego C. [1 ]
Pimentel, Bruno [1 ]
Souza, Renata [2 ]
Leite, Joao P. [3 ]
Edwards, Dylan J. [4 ,5 ]
Santos, Taiza E. G. [3 ]
Louzada, Francisco [1 ]
机构
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, Brazil
[4] Moss Rehabil Res Inst, Elkins Pk, PA USA
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia
基金
巴西圣保罗研究基金会;
关键词
State space model; Symbolic data analysis; Verticality perception; LINEAR-REGRESSION; ROBUST REGRESSION; MODELS;
D O I
10.1016/j.ins.2019.12.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [31] Similarity-margin based feature selection for symbolic interval data
    Hedjazi, Lyamine
    Aguilar-Martin, Joseph
    Le Lann, Marie-Veronique
    PATTERN RECOGNITION LETTERS, 2011, 32 (04) : 578 - 585
  • [32] Logistic regression-based pattern classifiers for symbolic interval data
    de Souza, Renata M. C. R.
    Queiroz, Diego C. F.
    Cysneiros, Francisco Jose A.
    PATTERN ANALYSIS AND APPLICATIONS, 2011, 14 (03) : 273 - 282
  • [33] Fuzzy c-means clustering methods for symbolic interval data
    de Carvalho, Francisco de A. T.
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 423 - 437
  • [34] Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data
    Cai, Zhanzhang
    Jonsson, Per
    Jin, Hongxiao
    Eklundh, Lars
    REMOTE SENSING, 2017, 9 (12)
  • [35] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chen-Chia Chuang
    Jin-Tsong Jeng
    Wei-Yang Lin
    Chih-Ching Hsiao
    Chin-Wang Tao
    International Journal of Fuzzy Systems, 2020, 22 : 891 - 900
  • [36] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chuang, Chen-Chia
    Jeng, Jin-Tsong
    Lin, Wei-Yang
    Hsiao, Chih-Ching
    Tao, Chin-Wang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (03) : 891 - 900
  • [37] Dynamic seasonality in time series
    So, Mike K. P.
    Chung, Ray S. W.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 212 - 226
  • [38] Lossless Data Compression for Time-Series Sensor Data Based on Dynamic Bit Packing
    Hwang, Sang-Ho
    Kim, Kyung-Min
    Kim, Sungho
    Kwak, Jong Wook
    SENSORS, 2023, 23 (20)
  • [39] Forecasting Symbolic Candle Chart-Valued Time Series
    Park, Heewon
    Sakaori, Fumitake
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2014, 21 (06) : 471 - 486
  • [40] Policy gradient empowered LSTM with dynamic skips for irregular time series data
    Weerakody, Philip B.
    Wong, Kok Wai
    Wang, Guanjin
    APPLIED SOFT COMPUTING, 2023, 142