Dynamic time series smoothing for symbolic interval data applied to neuroscience

被引:7
|
作者
Nascimento, Diego C. [1 ]
Pimentel, Bruno [1 ]
Souza, Renata [2 ]
Leite, Joao P. [3 ]
Edwards, Dylan J. [4 ,5 ]
Santos, Taiza E. G. [3 ]
Louzada, Francisco [1 ]
机构
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos, Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
[3] Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto, Brazil
[4] Moss Rehabil Res Inst, Elkins Pk, PA USA
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia
基金
巴西圣保罗研究基金会;
关键词
State space model; Symbolic data analysis; Verticality perception; LINEAR-REGRESSION; ROBUST REGRESSION; MODELS;
D O I
10.1016/j.ins.2019.12.026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [21] Radial Basis Function Networks With Linear Interval Regression Weights for Symbolic Interval Data
    Su, Shun-Feng
    Chuang, Chen-Chia
    Tao, C. W.
    Jeng, Jin-Tsong
    Hsiao, Chih-Ching
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (01): : 69 - 80
  • [22] LINEAR DECAYING WEIGHTS FOR TIME SERIES SMOOTHING: AN ANALYSIS
    Ballini, R.
    Yager, R. R.
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2014, 22 (01) : 23 - 40
  • [23] Exploratory data analysis of interval-valued symbolic data with matrix visualization
    Kao, Chiun-How
    Nakano, Junji
    Shieh, Sheau-Hue
    Tien, Yin-Jing
    Wu, Han-Ming
    Yang, Chuan-Kai
    Chen, Chun-houh
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 79 : 14 - 29
  • [24] Descriptive Statistics of Non-Uniform Interval Symbolic Data
    Guo Jun-peng
    Li Wen-hua
    Gao Feng
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 831 - 834
  • [25] Standardization of interval symbolic data based on the empirical descriptive statistics
    Guo, Junpeng
    Li, Wenhua
    Li, Chenhua
    Gao, Sa
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (03) : 602 - 610
  • [26] A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data
    Kim, Min Seong
    Sun, Yixiao
    Yang, Jingjing
    JOURNAL OF ECONOMETRICS, 2017, 197 (02) : 298 - 322
  • [27] A modal symbolic classifier for selecting time series models
    Prudêncio, RBC
    Ludermir, TB
    de Carvalho, FDT
    PATTERN RECOGNITION LETTERS, 2004, 25 (08) : 911 - 921
  • [28] Dynamic clustering of interval data based on hybrid Lq distance
    de Souza, Leandro Carlos
    Cardoso Rodrigues de Souza, Renata Maria
    Amorim do Amaral, Gettllio Jose
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (02) : 687 - 718
  • [29] Determination of MBR fouling and chemical cleaning interval using statistical methods applied on dynamic index data
    Kim, M. J.
    Sankararao, B.
    Yoo, C. K.
    JOURNAL OF MEMBRANE SCIENCE, 2011, 375 (1-2) : 345 - 353
  • [30] Logistic regression-based pattern classifiers for symbolic interval data
    Renata M. C. R. de Souza
    Diego C. F. Queiroz
    Francisco José A. Cysneiros
    Pattern Analysis and Applications, 2011, 14 : 273 - 282