A new mussel-inspired highly self-adhesive & conductive poly (vinyl alcohol)-based hydrogel for wearable sensors

被引:50
|
作者
Yu, Yaru [1 ]
Zhao, Xiaowen [1 ]
Ye, Lin [1 ]
机构
[1] Sichuan Univ, State Key Lab Polymer Mat Engn, Polymer Res Inst, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
PVA-based hydrogel; Mussel-inspired adhesive mechanism; Stretchability; High self-adhesion; Wearable sensor; STRAIN SENSOR; CROSS-LINKING; NANOPARTICLES; ACID; SOFT;
D O I
10.1016/j.apsusc.2021.150162
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poly (vinyl alcohol) (PVA) hydrogel with nontoxicity, good biocompatibility and high mechanical strength was promising for wearable sensors. However, the traditional freezing/thawing or borax crosslinking method consumed large number of hydroxyl groups in PVA chains, causing insufficient self-adhesiveness of hydrogel. Herein, inspired by mussel-adhesive mechanism, we innovatively introduced carboxyl groups into PVA chains and fabricated PVA-COOH /polydopamine (PDA) hydrogel by incorporation with PDA as crosslinking agent. The formation mechanism of the hydrogel was confirmed through FTIR and 13C NMR analysis. With increasing PDA content, the crosslinking density increased significantly and the dense networks formed by dual covalent/ hydrogen bonding. The hydrogel exhibited impressive stretchability and extremely high adhesiveness. It could adhere to both hydrophilic and hydrophobic surface, and the adhesion strength to metal/ rubber/pigskin reached as high as 158.26 kPa/149.86 kPa/56.67 kPa, respectively, attributing to the incorporated enough free catechol/ quinone group, carboxyl/hydroxyl group and newly formed amide group in hydrogel, while the adhesion failure mode consisted of both interface failure and matrix failure of hydrogel, which consumed high energy under stress. Furthermore, the hydrogel showed conductive with high strain sensitivity, which could steadily and repeatedly monitor large-scale and subtle limb motions, exhibiting significant and diverse potential in wearable strain sensors.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Stretchable, self-adhesive, and conductive hemicellulose-based hydrogels as wearable strain sensors
    Zhao, Lihui
    Luo, Banxin
    Gao, Shishuai
    Liu, Yupeng
    Lai, Chenhuan
    Zhang, Daihui
    Guan, Wenxian
    Wang, Chunpeng
    Chu, Fuxiang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 282
  • [22] High stretchable and self-adhesive multifunctional hydrogel for wearable and flexible sensors
    Zhong, Hao
    Shan, Wubin
    Liang, Lei
    Jiang, Xianzheng
    Wu, Linmei
    HELIYON, 2024, 10 (15)
  • [23] Mussel-inspired self-healing adhesive MXene hydrogel for epidermal electronics
    Zhang, Yunfei
    Xu, Zhishan
    Li, Mingkun
    Yuan, Yue
    Wang, Wei
    Zhang, Liqun
    Wan, Pengbo
    DEVICE, 2024, 2 (03):
  • [24] Mussel-Inspired Adhesive and Self-Healing Hydrogel as an Injectable Wound Dressing
    Chang, Kai-Yi
    Chou, Ying-Nien
    Chen, Wei-Yu
    Chen, Chuh-Yean
    Lin, Hong-Ru
    POLYMERS, 2022, 14 (16)
  • [25] A transparent, self-adhesive and fully recyclable conductive PVA based hydrogel for wearable strain sensor
    Zhang, Weiwei
    Dai, Leyu
    Sun, Tao
    Qin, Chuanxiang
    Wang, Jianjun
    Sun, Jun
    Dai, Lixing
    POLYMER, 2023, 283
  • [26] Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics
    Donglin Gan
    Tao Shuai
    Xiao Wang
    Ziqiang Huang
    Fuzeng Ren
    Liming Fang
    Kefeng Wang
    Chaoming Xie
    Xiong Lu
    Nano-Micro Letters, 2020, 12 (12) : 121 - 136
  • [27] Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics
    Gan, Donglin
    Shuai, Tao
    Wang, Xiao
    Huang, Ziqiang
    Ren, Fuzeng
    Fang, Liming
    Wang, Kefeng
    Xie, Chaoming
    Lu, Xiong
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [28] Facile and fast preparation of stretchable, self-adhesive, moisturizing, antifreezing and conductive tough hydrogel for wearable strain sensors
    Chao, Yanxia
    Li, Ying
    Wang, Huibin
    Wang, Nan
    Wang, Tao
    Chu, Zhuangzhuang
    Yang, Zhuohong
    Hu, Yang
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (12) : 4406 - 4416
  • [29] Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics
    Donglin Gan
    Tao Shuai
    Xiao Wang
    Ziqiang Huang
    Fuzeng Ren
    Liming Fang
    Kefeng Wang
    Chaoming Xie
    Xiong Lu
    Nano-Micro Letters, 2020, 12
  • [30] Mussel-Inspired Adhesive and Conductive Hydrogel with Long-Lasting Moisture and Extreme Temperature Tolerance
    Han, Lu
    Liu, Kezhi
    Wang, Menghao
    Wang, Kefeng
    Fang, Liming
    Chen, Haiting
    Zhou, Jie
    Lu, Xiong
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (03)