3D bioprinting in cardiac tissue engineering

被引:95
作者
Wang, Zihan [1 ,4 ]
Wang, Ling [3 ]
Li, Ting [1 ]
Liu, Sitian [1 ]
Guo, Baolin [5 ,6 ]
Huang, Wenhua [1 ,2 ]
Wu, Yaobin [1 ]
机构
[1] Southern Med Univ, Guangdong Engn Res Ctr Translat Med 3D Printing A, Guangdong Prov Key Lab Med Biomech, Dept Human Anat,Sch Basic Med Sci, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Guangdong Med Innovat Platform Translat 3D Printi, Affiliated Hosp 3, Guangzhou 510515, Peoples R China
[3] Southern Med Univ, Sch Biomed Engn, Biomat Res Ctr, Guangzhou 510515, Peoples R China
[4] Southern Med Univ, Sch Clin Med 1, Guangzhou 510515, Peoples R China
[5] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Peoples R China
[6] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
来源
THERANOSTICS | 2021年 / 11卷 / 16期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
3D bioprinting; bioinks; printed biomaterials; cardiac muscle; tissue engineering; PLURIPOTENT STEM-CELLS; IN-VITRO; SKELETAL-MUSCLE; ELECTRICAL-STIMULATION; NANOFIBROUS SCAFFOLDS; HEART; FABRICATION; HYDROGELS; COLLAGEN; ALIGNMENT;
D O I
10.7150/thno.61621
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Heart disease is the main cause of death worldwide. Because death of the myocardium is irreversible, it remains a significant clinical challenge to rescue myocardial deficiency. Cardiac tissue engineering (CTE) is a promising strategy for repairing heart defects and offers platforms for studying cardiac tissue. Numerous achievements have been made in CTE in the past decades based on various advanced engineering approaches. 3D bioprinting has attracted much attention due to its ability to integrate multiple cells within printed scaffolds with complex 3D structures, and many advancements in bioprinted CTE have been reported recently. Herein, we review the recent progress in 3D bioprinting for CTE. After a brief overview of CTE with conventional methods, the current 3D printing strategies are discussed. Bioink formulations based on various biomaterials are introduced, and strategies utilizing composite bioinks are further discussed. Moreover, several applications including heart patches, tissue-engineered cardiac muscle, and other bionic structures created via 3D bioprinting are summarized. Finally, we discuss several crucial challenges and present our perspective on 3D bioprinting techniques in the field of CTE.
引用
收藏
页码:7948 / 7969
页数:22
相关论文
共 193 条
[1]   Conductive nanofibrous Chitosan/PEDOT:PSS tissue engineering scaffolds [J].
Abedi, Ali ;
Hasanzadeh, Mahdi ;
Tayebi, Lobat .
MATERIALS CHEMISTRY AND PHYSICS, 2019, 237
[2]   Age-Dependent Effect of Pediatric Cardiac Progenitor Cells After Juvenile Heart Failure [J].
Agarwal, Udit ;
Smith, Amanda W. ;
French, Kristin M. ;
Boopathy, Archana V. ;
George, Alex ;
Trac, David ;
Brown, Milton E. ;
Shen, Ming ;
Jiang, Rong ;
Fernandez, Janet D. ;
Kogon, Brian E. ;
Kanter, Kirk R. ;
Alsoufi, Baahaldin ;
Wagner, Mary B. ;
Platt, Manu O. ;
Davis, Michael E. .
STEM CELLS TRANSLATIONAL MEDICINE, 2016, 5 (07) :883-892
[3]   Multifunctional 3D-Printed Patches for Long-Term Drug Release Therapies after Myocardial Infarction [J].
Ajdary, Rubina ;
Ezazi, Nazanin Zanjanizadeh ;
Correia, Alexandra ;
Kemell, Marianna ;
Huan, Siqi ;
Ruskoaho, Heikki J. ;
Hirvonen, Jouni ;
Santos, Helder A. ;
Rojas, Orlando J. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (34)
[4]   Bioprinting and its applications in tissue engineering and regenerative medicine [J].
Aljohani, Waeljumah ;
Ullah, Muhammad Wajid ;
Zhang, Xianglin ;
Yang, Guang .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 107 :261-275
[5]   Electroconductive nanoengineered biomimetic hybrid fibers for cardiac tissue engineering [J].
Allison, Shelby ;
Ahumada, Manuel ;
Andronic, Cristina ;
McNeill, Brian ;
Variola, Fabio ;
Griffith, May ;
Ruel, Marc ;
Hamel, Veronique ;
Liang, Wenbin ;
Suuronen, Erik J. ;
Alarcon, Emilio I. .
JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (13) :2402-2406
[6]   Development of a 3D angiogenesis model to study tumour - endothelial cell interactions and the effects of anti-angiogenic drugs [J].
Amann, Arno ;
Zwierzina, Marit ;
Koeck, Stefan ;
Gamerith, Gabriele ;
Pechriggl, Elisabeth ;
Huber, Julia M. ;
Lorenz, Edith ;
Kelm, Jens M. ;
Hilbe, Wolfgang ;
Zwierzina, Heinz ;
Kern, Johann .
SCIENTIFIC REPORTS, 2017, 7
[7]   Enhanced Cardiac Differentiation of Human Cardiovascular Disease Patient-Specific Induced Pluripotent Stem Cells by Applying Unidirectional Electrical Pulses Using Aligned Electroactive Nanofibrous Scaffolds [J].
Amirabad, Leila Mohammadi ;
Massumi, Mohammad ;
Shamsara, Mehdi ;
Shabani, Iman ;
Amari, Afshin ;
Mohammadi, Majid Mossahebi ;
Hosseinzadeh, Simzar ;
Vakilian, Saeid ;
Steinbach, Sarah K. ;
Khorramizadeh, Mohammad R. ;
Soleimani, Masoud ;
Barzin, Jalal .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) :6849-6864
[8]  
[Anonymous], 2018, Advanced Functional Materials, V28
[9]  
[Anonymous], 2017, MAT SCI ENG C, P81
[10]   Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer [J].
Arai, Kenichi ;
Murata, Daiki ;
Verissimo, Ana Raquel ;
Mukae, Yosuke ;
Itoh, Manabu ;
Nakamura, Anna ;
Morita, Shigeki ;
Nakayama, Koichi .
PLOS ONE, 2018, 13 (12)