The Laplacian energy and Laplacian Estrada index of random multipartite graphs

被引:3
作者
Hu, Dan [1 ]
Li, Xueliang [2 ]
Liu, Xiaogang [1 ]
Zhang, Shenggui [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 900071, Peoples R China
关键词
Random multipartite graph; Laplacian energy; Laplacian Estrada index; UPPER-BOUNDS; EIGENVALUES;
D O I
10.1016/j.jmaa.2016.05.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph on n vertices and m edges and mu(1), mu(2), ..., mu(3) be the eigenvalues of the Laplacian matrix of G. The Laplacian energy of G is defined as epsilon(L)(G) = Sigma(n)(i=1) vertical bar mu(i) - 2m/n vertical bar and the Laplacian Estrada index of G is defined as LEE(G) = Sigma(n)(i=1) e(mu i-2m/n). In this paper we establish asymptotic lower and upper bounds to the Laplacian energy and Laplacian Estrada index, respectively, for random multipartite graphs. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:675 / 687
页数:13
相关论文
共 35 条
  • [1] [Anonymous], MATH CHEM MONOGR
  • [2] Lower bounds for Estrada index and Laplacian Estrada index
    Bamdad, Hamidreza
    Ashraf, Firouzeh
    Gutman, Ivan
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (07) : 739 - 742
  • [3] Spectral measure of large random Hankel, Markov and Toeplitz matrices
    Bryc, W
    Dembo, A
    Jiang, TF
    [J]. ANNALS OF PROBABILITY, 2006, 34 (01) : 1 - 38
  • [4] Chang A, 2012, MATCH-COMMUN MATH CO, V68, P767
  • [5] On Laplacian energy in terms of graph invariants
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    Gutman, Ivan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 83 - 92
  • [6] On Laplacian energy of graphs
    Das, Kinkar Ch.
    Mojallal, Seyed Ahmad
    [J]. DISCRETE MATHEMATICS, 2014, 325 : 52 - 64
  • [7] Deng HY, 2010, MATCH-COMMUN MATH CO, V63, P777
  • [8] The Laplacian energy of random graphs
    Du, Wenxue
    Li, Xueliang
    Li, Yiyang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 368 (01) : 311 - 319
  • [9] Erds P., 1959, Publ. math. debrecen, V6, P290, DOI 10.5486/PMD.1959.6.3-4.12