Random multipartite graph;
Laplacian energy;
Laplacian Estrada index;
UPPER-BOUNDS;
EIGENVALUES;
D O I:
10.1016/j.jmaa.2016.05.049
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let G be a simple graph on n vertices and m edges and mu(1), mu(2), ..., mu(3) be the eigenvalues of the Laplacian matrix of G. The Laplacian energy of G is defined as epsilon(L)(G) = Sigma(n)(i=1) vertical bar mu(i) - 2m/n vertical bar and the Laplacian Estrada index of G is defined as LEE(G) = Sigma(n)(i=1) e(mu i-2m/n). In this paper we establish asymptotic lower and upper bounds to the Laplacian energy and Laplacian Estrada index, respectively, for random multipartite graphs. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Sungkyunkwan Univ, Dept Math, Suwon 440746, South KoreaSungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
Das, Kinkar Ch.
Mojallal, Seyed Ahmad
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Math, Suwon 440746, South KoreaSungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
Mojallal, Seyed Ahmad
Gutman, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
State Univ Novi Pazar, Novi Pazar, SerbiaSungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
机构:
Sungkyunkwan Univ, Dept Math, Suwon 440746, South KoreaSungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
Das, Kinkar Ch.
Mojallal, Seyed Ahmad
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Math, Suwon 440746, South KoreaSungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
Mojallal, Seyed Ahmad
Gutman, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
State Univ Novi Pazar, Novi Pazar, SerbiaSungkyunkwan Univ, Dept Math, Suwon 440746, South Korea