Mutual translatability, equivalence, and the structure of theories

被引:2
作者
Barrett, Thomas William [1 ,2 ]
Halvorson, Hans [1 ,2 ]
机构
[1] UC Santa Barbara, Dept Philosophy Barrett, Santa Barbara, CA 93106 USA
[2] Princeton Univ, Dept Philosophy Halvorson, Princeton, NJ 08544 USA
关键词
Equivalence; Structure; Translation; Cantor-Bernstein; co-Cantor-Bernstein; THEORETICAL EQUIVALENCE; CLASSICAL MECHANICS; SEMANTIC VIEW;
D O I
10.1007/s11229-022-03733-8
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
This paper presents a simple pair of first-order theories that are not definitionally (nor Morita) equivalent, yet are mutually conservatively translatable and mutually 'surjectively' translatable. We use these results to clarify the overall geography of standards of equivalence and to show that the structural commitments that theories make behave in a more subtle manner than has been recognized.
引用
收藏
页数:36
相关论文
共 62 条
[1]  
Andréka H, 2005, MATH LOGIC QUART, V51, P591, DOI [10.1002/malq.200410051, 10.1002/malq.200410051/www.mlq-journal.org]
[2]  
Andreka H., 2008, DEFINING NEW UNIVER, P93
[3]  
[Anonymous], 2006, P WORKSH C LOG ALG A
[4]  
[Anonymous], 1899, Grundlagen der Geometrie
[5]  
[Anonymous], 1951, Philosophical Studies, DOI DOI 10.1007/BF02198233
[6]  
Baez J., 2006, PROPERTY STRUCTURE S
[7]  
Baez JC, 2010, IMA VOL MATH APPL, V152, P1, DOI 10.1007/978-1-4419-1524-5_1
[8]  
Barrett T., 2019, PHILOS SCI
[9]  
Barrett T.W., 2021, IN PRESS
[10]   Equivalent and Inequivalent Formulations of Classical Mechanics [J].
Barrett, Thomas William .
BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2019, 70 (04) :1167-1199