Monolithic optical frequency comb based on quantum dashed mode locked lasers for Tb/s data transmission

被引:0
作者
Martinez, A. [1 ]
Calo, C. [1 ]
Panapakkam, V. [1 ]
Merghem, K. [1 ]
Watts, R. T. [2 ]
Vujicic, V. [2 ]
Browning, C. [2 ]
Accard, A. [3 ,4 ]
Lelarge, F. [3 ,4 ]
Barry, L. P. [2 ]
Ramdane, A. [1 ]
机构
[1] CNRS, Lab Photon & Nanostruct, F-75700 Paris, France
[2] Dublin City Univ, Sch Elect Engn, Rince Inst, Dublin 9, Ireland
[3] III V Lab, Palaiseau, France
[4] CEA LETI, Grenoble, France
来源
QUANTUM SENSING AND NANOPHOTONIC DEVICES XII | 2015年 / 9370卷
关键词
SEMICONDUCTOR-LASERS; PULSE GENERATION; TIMING JITTER; STABILITY; PERFORMANCE; AMPLIFIERS; AMPLITUDE; LOCKING;
D O I
10.1117/12.2175521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical frequency combs have great potential for ultra-high bit rate telecommunications e. g. optical orthogonal frequency-division multiplexing superchannels. For frequency comb generation, monolithic Quantum Dash semiconductor mode-locked lasers are very attractive candidates owing to their broadband optical spectrum, inherent intrinsic low noise and compactness. The active region is based on InAs nanostructures grown on InP for operation in the 1.55 mu m window. Owing to enhanced nonlinear effects, a single gain section generates short pulses in the modelocking regime without resorting to an absorber section. An optical bandwidth over 1.3 THz yielding over 100 channels, 10 GHz spaced, is reported. Mode-locking properties are analyzed in the frequency domain using the concept of supermodes. An Allan deviation down to similar to 10(-9) is reported for these passively mode-locked lasers. The low timing jitter, longterm stability and high channel count of these QD based combs are of great potential for Tb/ s data transmission with only one single FP type laser source.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Low phase noise all-optical oscillator using quantum dash modelocked laser [J].
Akrout, A. ;
Shen, A. ;
Enard, A. ;
Duan, G. -H. ;
Lelarge, F. ;
Ramdane, A. .
ELECTRONICS LETTERS, 2010, 46 (01) :73-U103
[2]   Gain dynamics and saturation in semiconductor quantum dot amplifiers [J].
Berg, TW ;
Mork, J ;
Hvam, JM .
NEW JOURNAL OF PHYSICS, 2004, 6 :1-23
[3]  
Coldren Larry A., 2013, IEEE PHOTONICS TECHN, V25
[4]   Frequency stability of a 10 GHz optical frequency comb from a semiconductor-based mode-locked laser with an intracavity 10,000 finesse etalon [J].
Davila-Rodriguez, Josue ;
Bagnell, Kristina ;
Delfyett, Peter J. .
OPTICS LETTERS, 2013, 38 (18) :3665-3668
[5]   Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications [J].
Delfyett, Peter J. ;
Gee, Sangyoun ;
Choi, Myoung-Taek ;
Izadpanah, Hossein ;
Lee, Wangkuen ;
Ozharar, Sarper ;
Quinlan, Franklyn ;
Yilmaz, Tolga .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (07) :2701-2719
[6]  
Delfyett Peter J., 2008, J LIGHTWAVE TECHNOLO, V26
[7]   Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm [J].
Gosset, C. ;
Merghem, K. ;
Martinez, A. ;
Moreau, G. ;
Patriarche, G. ;
Aubin, G. ;
Ramdane, A. ;
Landreau, J. ;
Lelarge, F. .
APPLIED PHYSICS LETTERS, 2006, 88 (24)
[8]   Multi-wavelength source using low drive-voltage amplitude modulators for optical communications [J].
Healy, Tadhg ;
Gunning, Fatima C. Garcia ;
Ellis, Andrew D. .
OPTICS EXPRESS, 2007, 15 (06) :2981-2986
[9]   30-THz span optical frequency comb generation by self-phase modulation in an optical fiber [J].
Imai, K ;
Kourogi, M ;
Ohtsu, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1998, 34 (01) :54-60
[10]   RF linewidth in monolithic passively mode-locked semiconductor laser [J].
Kefelian, Fabien ;
O'Donoghue, Shane ;
Todaro, Maria Teresa ;
McInerney, John G. ;
Huyet, Guillaume .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (13-16) :1405-1407