Hyperbolic harmonic functions: Weak approach with applications in function spaces

被引:1
作者
Eriksson, Sirkka-Liisa
Kotilainen, Marko
Latvala, Visa
机构
[1] Tampere Univ Technol, Inst Math, FI-33101 Tampere, Finland
[2] Univ Joensuu, Dept Math & Phys, FI-80101 Joensuu, Finland
关键词
hyperbolic harmonic functions; Caccioppoli inequality; Bloch functions;
D O I
10.1007/s00006-007-0043-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Harmonic functions with respect to the Poincare metric on the unit ball are called hyperbolic harmonic functions. We establish the weak formulation of hyperbolic harmonic functions and use it in the study of hyperbolic harmonic function spaces. In particular, we give the Carleson measure characterization for the whole spectrum of spaces, whose analytic counterparts include among else Bloch spaces, Bergman-spaces, Besov-spaces, and Q(p)-spaces.
引用
收藏
页码:425 / 436
页数:12
相关论文
共 20 条
[1]  
Anderson GD., 1997, Conformal Invariants, Inequalities, and Quasicon-formal Maps
[2]  
[Anonymous], 1981, STARTING UNIT CIRCLE
[3]  
[Anonymous], ANN ACAD SCI FENN MA
[4]  
[Anonymous], 1981, ORDWAY PROFESSORSHIP
[5]  
[Anonymous], LECT NOTES MATH
[6]   On M-harmonic Bloch functions and their Carleson measures [J].
Choe, BR ;
Lee, YJ .
GLASGOW MATHEMATICAL JOURNAL, 1998, 40 :273-289
[7]   Integral formulas for hypermonogenic functions [J].
Eriksson, SL .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2004, 11 (05) :705-717
[8]  
Eriksson SL, 2004, TRENDS MATH, P97
[9]   Harmonic functions on the real hyperbolic ball II Hardy-Sobolev and Lipschitz spaces [J].
Grellier, S ;
Jaming, P .
MATHEMATISCHE NACHRICHTEN, 2004, 268 :50-73
[10]  
Heinonen J., 1993, NONLINEAR POTENTIAL