Entropy-energy inequalities for qudit states

被引:11
作者
Figueroa, Armando [1 ]
Lopez, Julio [1 ]
Castanos, Octavio [1 ]
Lopez-Pena, Ramon [1 ]
Man'ko, Margarita A. [2 ]
Man'ko, Vladimir I. [2 ,3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] PN Lebedev Phys Inst, Moscow 119991, Russia
[3] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
关键词
entropy inequalities; extremal density matrix; Hamiltonian reconstruction; SPIN; PARAMETRIZATION; TOMOGRAPHY; MATRICES;
D O I
10.1088/1751-8113/48/6/065301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a procedure to find the extremal density matrices for any finite Hamiltonian of a qudit system. These extremal density matrices provide an approximate description of the energy spectrum of the Hamiltonian. In the case of restricting the extremal density matrices by pure states, we show that the energy spectrum of the Hamiltonian is recovered for d = 2 and 3. We conjecture that by means of this approach the energy spectrum can be recovered for the Hamiltonian of an arbitrary finite qudit system. For a given qudit system Hamiltonian, we find new inequalities connecting the mean value of the Hamiltonian and the entropy of an arbitrary state. We demonstrate that these inequalities take place for both the considered extremal density matrices and generic ones.
引用
收藏
页数:11
相关论文
共 30 条
[1]   Coset parameterization of density matrices [J].
Akhtarshenas, S. J. .
OPTICS AND SPECTROSCOPY, 2007, 103 (03) :411-415
[2]   A TOMOGRAPHIC APPROACH TO WIGNER FUNCTION [J].
BERTRAND, J ;
BERTRAND, P .
FOUNDATIONS OF PHYSICS, 1987, 17 (04) :397-405
[3]   Parametrizations of density matrices [J].
Bruening, E. ;
Makela, H. ;
Messina, A. ;
Petruccione, F. .
JOURNAL OF MODERN OPTICS, 2012, 59 (01) :1-20
[4]   Characterization of the positivity of the density matrix in terms of the coherence vector representation [J].
Byrd, MS ;
Khaneja, N .
PHYSICAL REVIEW A, 2003, 68 (06) :13
[5]   Phase transitions and accidental degeneracy in nonlinear spin systems -: art. no. 012406 [J].
Castaños, O ;
López-Peña, R ;
Hirsch, JG ;
López-Moreno, E .
PHYSICAL REVIEW B, 2005, 72 (01)
[6]   Squeeze tomography of quantum states [J].
Castaños, O ;
López-Peña, R ;
Man'ko, MA ;
Man'ko, VI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (35) :8529-8544
[7]   No singularities in observables at the phase transition in the Dicke model [J].
Castanos, O. ;
Nahmad-Achar, E. ;
Lopez-Pena, R. ;
Hirsch, J. G. .
PHYSICAL REVIEW A, 2011, 83 (05)
[8]   Nonstationary linear spin systems in the probability representation [J].
Castaños, O ;
López-Peña, R ;
Man'ko, MA ;
Man'ko, VI .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (03) :227-236
[9]   Kernel of star-product for spin tomograms [J].
Castaños, O ;
López-Peña, R ;
Man'ko, MA ;
Man'ko, VI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (16) :4677-4688
[10]   Subadditivity Condition for Spin Tomograms and Density Matrices of Arbitrary Composite and Noncomposite Qudit Systems [J].
Chernega, Vladimir N. ;
Man'ko, Olga V. ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2014, 35 (03) :278-290