A deep neural network based SMAP soil moisture product

被引:26
|
作者
Gao, Lun [1 ,2 ,3 ]
Gao, Qiang [4 ]
Zhang, Hankui [5 ]
Li, Xiaojun [6 ]
Chaubell, Mario Julian [7 ]
Ebtehaj, Ardeshir [1 ]
Shen, Lian [4 ]
Wigneron, Jean-Pierre [6 ]
机构
[1] Univ Minnesota, Dept Civil,Environm & Geo Engn, St Anthony Falls Lab, Minneapolis, MN 55414 USA
[2] Univ Illinois, Inst Sustainabil,Energy & Environm, Agroecosystem Sustainabil Ctr, Urbana, IL 61801 USA
[3] Univ Illinois, Coll Agr,Consumer & Environm Sci, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA
[4] Univ Minnesota, Dept Mech Engn, St Anthony Falls Lab, Minneapolis, MN 55414 USA
[5] South Dakota State Univ, Geospatial Sci Ctr Excellence, Dept Geog & Geospatial Sci, Brookings, SD 57007 USA
[6] INRA, ISPA UMR1391, F-33140 Villenave Dornon, France
[7] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
Soil moisture; L-band radiometry; SMAP; Deep neural networks; VEGETATION OPTICAL DEPTH; LAND-SURFACE PHENOLOGY; MICROWAVE EMISSION; TIME-SERIES; 4; DECADES; SATELLITE; RETRIEVAL; MODEL; MODIS; IMPACT;
D O I
10.1016/j.rse.2022.113059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, it is demonstrated that while satellite soil moisture (SM) retrievals often have minimum biases, reanalysis data can capture more temporal variability of SM, especially for non-cropland areas - when validated against in situ measurements. Accordingly, this paper presents a deep neural network (DNN) that utilizes the merits of a suite of existing satellite and reanalysis products to produce a new SM product with minimum (maximum) bias (correlation) - using NASA's Soil Moisture Active Passive (SMAP) data and ERA5 reanalysis. The benchmark of the network is a bias-adjusted SM with maximum correlation with in situ data over each land cover type. The mean of the benchmark data is adjusted to the product that exhibits a minimum bias over each land-cover type. Consistent with the laws of L-band microwave propagation in soil and canopy, the input variables of DNN include polarized SMAP brightness temperatures, incidence angle, vegetation scattering albedo, surface roughness parameter, surface water fraction, effective soil temperatures, bulk density, clay fraction, and vegetation optical depth from the normalized difference vegetation index (NDVI) climatology. The DNN is trained and validated using two years (04/2015-03/2017) of global data and deployed for assessment of its performance from 04/2017 to 03/2021. The testing results against in situ measurements demonstrate that the DNN outputs typically exhibit improved error quality metrics over most land-cover types and climate regimes and can properly capture SM temporal dynamics, beyond each SMAP product across regional to continental scales.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] DOWNSCALING OF SOIL MOISTURE PRODUCT OF SMAP
    Imanpour, F.
    Dehghani, M.
    Yazdi, M.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/ 4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 48-4, 2023, : 53 - 58
  • [2] Downscaling SMAP Soil Moisture Products With Convolutional Neural Network
    Xu, Wei
    Zhang, Zhaoxu
    Long, Zehao
    Qin, Qiming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4051 - 4062
  • [3] Downscaling of SMAP Soil Moisture Data by Using a Deep Belief Network
    Cai, Yulin
    Fan, Puran
    Lang, Sen
    Li, Mengyao
    Muhammad, Yasir
    Liu, Aixia
    REMOTE SENSING, 2022, 14 (22)
  • [4] Assessment of the SMAP Passive Soil Moisture Product
    Chan, Steven K.
    Bindlish, Rajat
    O'Neill, Peggy E.
    Njoku, Eni
    Jackson, Tom
    Colliander, Andreas
    Chen, Fan
    Burgin, Mariko
    Dunbar, Scott
    Piepmeier, Jeffrey
    Yueh, Simon
    Entekhabi, Dara
    Cosh, Michael H.
    Caldwell, Todd
    Walker, Jeffrey
    Wu, Xiaoling
    Berg, Aaron
    Rowlandson, Tracy
    Pacheco, Anna
    McNairn, Heather
    Thibeault, Marc
    Martinez-Fernandez, Jose
    Gonzalez-Zamora, Angel
    Seyfried, Mark
    Bosch, David
    Starks, Patrick
    Goodrich, David
    Prueger, John
    Palecki, Michael
    Small, Eric E.
    Zreda, Marek
    Calvet, Jean-Christophe
    Crow, Wade T.
    Kerr, Yann
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4994 - 5007
  • [5] Improved SMAP Soil Moisture Retrieval Using a Deep Neural Network-Based Replacement of Radiative Transfer and Roughness Model
    Lee, Jaese
    Im, Jungho
    Son, Bokyung
    Cosio, Eric G.
    Salinas, Norma
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [6] A Comparative Study of the SMAP Passive Soil Moisture Product With Existing Satellite-Based Soil Moisture Products
    Burgin, Mariko S.
    Colliander, Andreas
    Njoku, Eni G.
    Chan, Steven K.
    Cabot, Francois
    Kerr, Yann H.
    Bindlish, Rajat
    Jackson, Thomas J.
    Entekhabi, Dara
    Yueh, Simon H.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (05): : 2959 - 2971
  • [7] Estimating surface soil moisture from SMAP observations using a Neural Network technique
    Kolassa, J.
    Reichle, R. H.
    Liu, Q.
    Alemohammad, S. H.
    Gentine, P.
    Aida, K.
    Asanuma, J.
    Bircher, S.
    Caldwell, T.
    Colliander, A.
    Cosh, M.
    Collins, C. Holifield
    Jackson, T. J.
    Martinez-Fernandez, J.
    McNairn, H.
    Pacheco, A.
    Thibeault, M.
    Walker, J. P.
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 43 - 59
  • [8] SMAP SOIL MOISTURE PRODUCT VALIDITY IN HETEROGENEOUS IRRIGATED REGIONS
    Worrall, George
    Judge, Jasmeet
    Barrett, Charles
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4719 - 4722
  • [9] Development and assessment of the SMAP enhanced passive soil moisture product
    Chan, S. K.
    Bindlish, R.
    O'Neill, P.
    Jackson, T.
    Njoku, E.
    Dunbar, S.
    Chaubell, J.
    Piepmeier, J.
    Yueh, S.
    Entekhabi, D.
    Colliander, A.
    Chen, F.
    Cosh, M. H.
    Caldwell, T.
    Walker, J.
    Berg, A.
    McNairn, H.
    Thibeault, M.
    Martinez-Fernandez, J.
    Uldall, F.
    Seyfried, M.
    Bosch, D.
    Starks, P.
    Collins, C. Holifield
    Prueger, J.
    van der Velde, R.
    Asanuma, J.
    Palecki, M.
    Small, E. E.
    Zreda, M.
    Calvet, J.
    Crow, W. T.
    Kerr, Y.
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 931 - 941
  • [10] DEVELOPMENT AND VALIDATION OF THE SMAP ENHANCED PASSIVE SOIL MOISTURE PRODUCT
    Chan, S.
    Bindlish, R.
    O'Neill, P.
    Jackson, T.
    Chaubell, J.
    Piepmeier, J.
    Dunbar, S.
    Colliander, A.
    Chen, F.
    Entekhabi, D.
    Yueh, S.
    Cosh, M.
    Caldwell, T.
    Texas, U.
    Walker, J.
    Monash, U.
    Wu, X.
    Monash, U.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2539 - 2542