A deep neural network based SMAP soil moisture product

被引:27
作者
Gao, Lun [1 ,2 ,3 ]
Gao, Qiang [4 ]
Zhang, Hankui [5 ]
Li, Xiaojun [6 ]
Chaubell, Mario Julian [7 ]
Ebtehaj, Ardeshir [1 ]
Shen, Lian [4 ]
Wigneron, Jean-Pierre [6 ]
机构
[1] Univ Minnesota, Dept Civil,Environm & Geo Engn, St Anthony Falls Lab, Minneapolis, MN 55414 USA
[2] Univ Illinois, Inst Sustainabil,Energy & Environm, Agroecosystem Sustainabil Ctr, Urbana, IL 61801 USA
[3] Univ Illinois, Coll Agr,Consumer & Environm Sci, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA
[4] Univ Minnesota, Dept Mech Engn, St Anthony Falls Lab, Minneapolis, MN 55414 USA
[5] South Dakota State Univ, Geospatial Sci Ctr Excellence, Dept Geog & Geospatial Sci, Brookings, SD 57007 USA
[6] INRA, ISPA UMR1391, F-33140 Villenave Dornon, France
[7] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
Soil moisture; L-band radiometry; SMAP; Deep neural networks; VEGETATION OPTICAL DEPTH; LAND-SURFACE PHENOLOGY; MICROWAVE EMISSION; TIME-SERIES; 4; DECADES; SATELLITE; RETRIEVAL; MODEL; MODIS; IMPACT;
D O I
10.1016/j.rse.2022.113059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, it is demonstrated that while satellite soil moisture (SM) retrievals often have minimum biases, reanalysis data can capture more temporal variability of SM, especially for non-cropland areas - when validated against in situ measurements. Accordingly, this paper presents a deep neural network (DNN) that utilizes the merits of a suite of existing satellite and reanalysis products to produce a new SM product with minimum (maximum) bias (correlation) - using NASA's Soil Moisture Active Passive (SMAP) data and ERA5 reanalysis. The benchmark of the network is a bias-adjusted SM with maximum correlation with in situ data over each land cover type. The mean of the benchmark data is adjusted to the product that exhibits a minimum bias over each land-cover type. Consistent with the laws of L-band microwave propagation in soil and canopy, the input variables of DNN include polarized SMAP brightness temperatures, incidence angle, vegetation scattering albedo, surface roughness parameter, surface water fraction, effective soil temperatures, bulk density, clay fraction, and vegetation optical depth from the normalized difference vegetation index (NDVI) climatology. The DNN is trained and validated using two years (04/2015-03/2017) of global data and deployed for assessment of its performance from 04/2017 to 03/2021. The testing results against in situ measurements demonstrate that the DNN outputs typically exhibit improved error quality metrics over most land-cover types and climate regimes and can properly capture SM temporal dynamics, beyond each SMAP product across regional to continental scales.
引用
收藏
页数:15
相关论文
共 132 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Partitioning of Historical Precipitation Into Evaporation and Runoff Based on Hydrologic Dynamics Identified With Recent SMAP Satellite Measurements
    Akbar, Ruzbeh
    Short Gianotti, Daniel J.
    Salvucci, Guido D.
    Entekhabi, Dara
    [J]. WATER RESOURCES RESEARCH, 2020, 56 (12)
  • [3] Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements
    Al-Yaari, A.
    Wigneron, J. -P.
    Dorigo, W.
    Colliander, A.
    Pellarin, T.
    Hahn, S.
    Mialon, A.
    Richaume, P.
    Fernandez-Moran, R.
    Fan, L.
    Kerr, Y. H.
    De Lannoy, G.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 224 : 289 - 303
  • [4] Evaluating soil moisture retrievals from ESA's SMOS and NASA's SMAP brightness temperature datasets
    Al-Yaari, A.
    Wigneron, J. -P.
    Kerr, Y.
    Rodriguez-Fernandez, N.
    O'Neill, P. E.
    Jackson, T. J.
    De Lannoy, G. J. M.
    Al Bitar, A.
    Mialon, A.
    Richaume, P.
    Walker, J. P.
    Mahmoodi, A.
    Yueh, S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 193 : 257 - 273
  • [5] A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data
    Albergel, C.
    Balsamo, G.
    de Rosnay, P.
    Munoz-Sabater, J.
    Boussetta, S.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (10) : 3607 - 3620
  • [6] Infiltration into soils: Conceptual approaches and solutions
    Assouline, Shmuel
    [J]. WATER RESOURCES RESEARCH, 2013, 49 (04) : 1755 - 1772
  • [7] Balsamo G., 2011, ECMWF Newslett, V127, P78
  • [8] A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System
    Balsamo, Gianpaolo
    Viterbo, Pedro
    Beljaars, Anton
    van den Hurk, Bart
    Hirschi, Martin
    Betts, Alan K.
    Scipal, Klaus
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2009, 10 (03) : 623 - 643
  • [9] Present and future Koppen-Geiger climate classification maps at 1-km resolution
    Beck, Hylke E.
    Zimmermann, Niklaus E.
    McVicar, Tim R.
    Vergopolan, Noemi
    Berg, Alexis
    Wood, Eric F.
    [J]. SCIENTIFIC DATA, 2018, 5
  • [10] Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
    Beck, Hylke E.
    Pan, Ming
    Miralles, Diego G.
    Reichle, Rolf H.
    Dorigo, Wouter A.
    Hahn, Sebastian
    Sheffield, Justin
    Karthikeyan, Lanka
    Balsamo, Gianpaolo
    Parinussa, Robert M.
    van Dijk, Albert I. J. M.
    Du, Jinyang
    Kimball, John S.
    Vergopolan, Noemi
    Wood, Eric F.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (01) : 17 - 40