MONOTONICITY OF THE PRINCIPAL EIGENVALUE FOR A LINEAR TIME-PERIODIC PARABOLIC OPERATOR

被引:20
|
作者
Liu, Shuang [1 ]
Lou, Yuan [2 ]
Peng, Rui [3 ]
Zhou, Maolin [4 ]
机构
[1] Renmin Univ China, Inst Math Sci, Beijing 100872, Peoples R China
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Univ New England, Sch Sci & Technol, Dept Math, Armidale, NSW 2341, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
Time-periodic parabolic operator; principal eigenvalue; frequency; monotonicity; asymptotics; ELLIPTIC OPERATOR; ADVECTION; DIFFUSION;
D O I
10.1090/proc/14653
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the effect of frequency on the principal eigenvalue of a time-periodic parabolic operator with Dirichlet, Robin, or Neumann boundary conditions. The monotonicity and asymptotic behaviors of the principal eigenvalue with respect to the frequency parameter are established. Our results prove a conjecture raised by Hutson, Michaikow, and Polacik.
引用
收藏
页码:5291 / 5302
页数:12
相关论文
共 50 条
  • [31] FLOQUET EXPONENTS AND STABILIZABILITY IN TIME-PERIODIC PARABOLIC-SYSTEMS
    DAPRATO, G
    LUNARDI, A
    APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 22 (01): : 91 - 113
  • [32] Asymptotic behavior of the principal eigenvalue for cooperative periodic-parabolic systems and applications
    Bai, Xueli
    He, Xiaoqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9868 - 9903
  • [33] Effects of diffusion and advection on the principal eigenvalue of a periodic-parabolic problem with applications
    Peng, Rui
    Zhao, Xiao-Qiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (02) : 1611 - 1642
  • [34] Effects of diffusion and advection on the principal eigenvalue of a periodic-parabolic problem with applications
    Rui Peng
    Xiao-Qiang Zhao
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 1611 - 1642
  • [35] Discrete-time control of linear time-periodic systems
    Kalender, S.
    Flashner, H.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (04): : 0410091 - 0410099
  • [36] Accurate frequency domain measurement of the best linear time-invariant approximation of linear time-periodic systems including the quantification of the time-periodic distortions
    Louarroudi, E.
    Pintelon, R.
    Lataire, J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 48 (1-2) : 274 - 299
  • [37] EFFECTIVE DIFFUSION IN TIME-PERIODIC LINEAR PLANAR FLOW
    INDEIKINA, A
    CHANG, HC
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (10): : 2563 - 2566
  • [38] A bode sensitivity integral for linear time-periodic systems
    Sandberg, H
    Bernhardsson, B
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2644 - 2649
  • [39] Linear Time-Periodic Systems with Exceptional Points of Degeneracy
    Kazemi, Hamidreza
    Nada, Mohamed Y.
    Mealy, Tarek
    Abdelshafy, Ahmed F.
    Capolino, Filippo
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 1072 - 1073
  • [40] A bode sensitivity integral for linear time-periodic systems
    Sandberg, H
    Bernhardsson, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (12) : 2034 - 2039