A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression

被引:120
作者
Burnett, Angela C. [1 ]
Anderson, Jeremiah [1 ]
Davidson, Kenneth J. [1 ]
Ely, Kim S. [1 ]
Lamour, Julien [1 ]
Li, Qianyu [1 ]
Morrison, Bailey D. [1 ]
Yang, Dedi [1 ]
Rogers, Alistair [1 ]
Serbin, Shawn P. [1 ]
机构
[1] Brookhaven Natl Lab, Environm & Climate Sci Dept, Terr Ecosyst Sci & Technol Grp, Upton, NY 11973 USA
基金
美国能源部;
关键词
Hyperspectral reflectance; leaf traits; LMA; modelling; plant traits; PLSR; spectra; spectroradiometer; spectroscopy; OPTICAL-PROPERTIES; NITROGEN-CONTENT; SPECTROSCOPIC DETERMINATION; REFLECTANCE SPECTROSCOPY; IMAGING SPECTROSCOPY; CHLOROPHYLL CONTENT; BIOCHEMICAL TRAITS; SPECTRA; PLS; CONVERGENCE;
D O I
10.1093/jxb/erab295
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem monitoring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assumptions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR for predicting traits from spectra in the plant sciences.
引用
收藏
页码:6175 / 6189
页数:15
相关论文
共 79 条
[1]  
acquemoud S, 2019, LEAF OPTICAL PROPERT
[2]   Using leaf optical properties to detect ozone effects on foliar biochemistry [J].
Ainsworth, Elizabeth A. ;
Serbin, Shawn P. ;
Skoneczka, Jeffrey A. ;
Townsend, Philip A. .
PHOTOSYNTHESIS RESEARCH, 2014, 119 (1-2) :65-76
[3]   A spectral correction method for multi-scattering effects in close range hyperspectral imagery of vegetation scenes: application to nitrogen content assessment in wheat [J].
Al Makdessi, Nathalie ;
Ecarnot, Martin ;
Roumet, Pierre ;
Rabatel, Gilles .
PRECISION AGRICULTURE, 2019, 20 (02) :237-259
[4]  
Ali AA, 2015, ECOL APPL, V25, P2349, DOI [10.1890/14-2111.1.sm, 10.1890/14-2111.1]
[5]  
[Anonymous], 2015, PARTIAL LEAST SQUARE
[6]  
Asner Gregory P., 2008, P261, DOI 10.1201/9781420053432.ch12
[7]   Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region [J].
Asner, Gregory P. ;
Martin, Roberta E. ;
Carranza-Jimenez, Loreli ;
Sinca, Felipe ;
Tupayachi, Raul ;
Anderson, Christopher B. ;
Martinez, Paola .
NEW PHYTOLOGIST, 2014, 204 (01) :127-139
[8]   Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data [J].
Barnes, Mallory L. ;
Breshears, David D. ;
Law, Darin J. ;
van Leeuwen, Willem J. D. ;
Monson, Russell K. ;
Fojtik, Alec C. ;
Barron-Gafford, Greg A. ;
Moore, David J. P. .
PLOS ONE, 2017, 12 (12)
[9]   Improved temperature response functions for models of Rubisco-limited photosynthesis [J].
Bernacchi, CJ ;
Singsaas, EL ;
Pimentel, C ;
Portis, AR ;
Long, SP .
PLANT CELL AND ENVIRONMENT, 2001, 24 (02) :253-259
[10]   Plant functional trait change across a warming tundra biome [J].
Bjorkman, Anne D. ;
Myers-Smith, Isla H. ;
Elmendorf, Sarah C. ;
Normand, Signe ;
Rueger, Nadja ;
Beck, Pieter S. A. ;
Blach-Overgaard, Anne ;
Blok, Daan ;
Cornelissen, J. Hans C. ;
Forbes, Bruce C. ;
Georges, Damien ;
Goetz, Scott J. ;
Guay, Kevin C. ;
Henry, Gregory H. R. ;
HilleRisLambers, Janneke ;
Hollister, Robert D. ;
Karger, Dirk N. ;
Kattge, Jens ;
Manning, Peter ;
Prevey, Janet S. ;
Rixen, Christian ;
Schaepman-Strub, Gabriela ;
Thomas, Haydn J. D. ;
Vellend, Mark ;
Wilmking, Martin ;
Wipf, Sonja ;
Carbognani, Michele ;
Hermanutz, Luise ;
Levesque, Esther ;
Molau, Ulf ;
Petraglia, Alessandro ;
Soudzilovskaia, Nadejda A. ;
Spasojevic, Marko J. ;
Tomaselli, Marcello ;
Vowles, Tage ;
Alatalo, Juha M. ;
Alexander, Heather D. ;
Anadon-Rosell, Alba ;
Angers-Blondin, Sandra ;
te Beest, Mariska ;
Berner, Logan ;
Bjork, Robert G. ;
Buchwal, Agata ;
Buras, Allan ;
Christie, Katherine ;
Cooper, Elisabeth J. ;
Dullinger, Stefan ;
Elberling, Bo ;
Eskelinen, Anu ;
Frei, Esther R. .
NATURE, 2018, 562 (7725) :57-+