The Maximum k-Colorable Subgraph Problem and Related Problems

被引:4
作者
Kuryatnikova, Olga [1 ]
Sotirov, Renata [2 ]
Vera, Juan C. [2 ]
机构
[1] Erasmus Univ, NL-3062 PA Rotterdam, Netherlands
[2] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
关键词
k-colorable subgraph problem; stable set; chromatic number of a graph; generalized theta number; semidefinite programming; Johnson graphs; Hamming graphs; SEMIDEFINITE PROGRAMMING RELAXATIONS; CHROMATIC NUMBER; CUT; OPTIMIZATION; ASSIGNMENT; ALGORITHMS; SYMMETRY;
D O I
10.1287/ijoc.2021.1086
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The maximum k-colorable subgraph (MkCS) problem is to find an induced k-colorable subgraph with maximum cardinality in a given graph. This paper is an in-depth analysis of the MkCS problem that considers various semidefinite programming relaxations, including their theoretical and numerical comparisons. To simplify these relaxations, we exploit the symmetry arising from permuting the colors, as well as the symmetry of the given graphs when applicable. We also show how to exploit invariance under permutations of the subsets for other partition problems and how to use the MkCS problem to derive bounds on the chromatic number of a graph. Our numerical results verify that the proposed relaxations provide strong bounds for the MkCS problem and that those outperformexisting bounds formost of the test instances. Summary of Contribution: The maximum k-colorable subgraph (MkCS) problem is to find an induced k-colorable subgraph with maximum cardinality in a given graph. The MkCS problem has a number of applications, such as channel assignment in spectrum sharing networks (e.g., Wi-Fi or cellular), very-large-scale integration design, human genetic research, and so on. The MkCS problem is also related to several other optimization problems, including the graph partition problem and the max-k-cut problem. The two mentioned problems have applications in parallel computing, network partitioning, floor planning, and so on. This paper is an in-depth analysis of theMkCS problem that considers various semidefinite programming relaxations, including their theoretical and numerical comparisons. Further, our analysis relates the MkCS results with the stable set and the chromatic number problems. We provide extended numerical results that verify that the proposed bounding approaches provide strong bounds for the MkCS problem and that those outperform existing bounds for most of the test instances. Moreover, our lower bounds on the chromatic number of a graph are competitive with existing bounds in the literature.
引用
收藏
页码:656 / +
页数:15
相关论文
共 57 条
[1]   Finding a maximum-weight induced k-partite subgraph of an i-triangulated graph [J].
Addario-Berry, Louigi ;
Kennedy, W. S. ;
King, Andrew D. ;
Li, Zhentao ;
Reed, Bruce .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (07) :765-770
[2]   INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION [J].
ALIZADEH, F .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) :13-51
[3]  
[Anonymous], 2004, Proceedings of the 23rd annual ACM symposium on Principles of distributed computing, PODC '04, DOI DOI 10.1145/1011767.1011783
[4]  
[Anonymous], 2016, J GRAPH ALGORITHMS A
[5]  
Bentert M, 2019, J SCHEDULING, V22, P3, DOI 10.1007/s10951-018-0595-8
[6]   Independence number of products of Kneser graphs [J].
Bresar, Bostjan ;
Valencia-Pabon, Mario .
DISCRETE MATHEMATICS, 2019, 342 (04) :1017-1027
[7]   A NEW TABLE OF CONSTANT WEIGHT CODES [J].
BROUWER, AE ;
SHEARER, JB ;
SLOANE, NJA ;
SMITH, WD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) :1334-1380
[9]  
Campelo Manoel., 2010, ELECT NOTES DISCRETE, V36, P503, DOI 10.1016/j.endm.2010.05.064
[10]   On approximate graph colouring and MAX-k-CUT algorithms based on the υ-function [J].
De Klerk, E ;
Pasechnik, DV ;
Warners, JP .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (03) :267-294