Newton's problem of the body of minimal resistance under a single-impact assumption

被引:35
作者
Comte, M [1 ]
Lachand-Robert, T [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
关键词
Local Minimizer; Geometrical Property; Unit Disc; Radial Function; Minimal Resistance;
D O I
10.1007/PL00009911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of the body of minimal resistance as formulated in [2]. Sect. 5: minimize F(u) := integral (u) dx/(1 + /delu(x)/(2)), where Omega is the unit disc of R-2, in the class of radial functions u : Omega --> [0,M] satisfying a geometrical property (I), corresponding to a single-impact assumption (M > 0 is a given parameter). We prove the existence of a critical value M* of M. For M greater than or equal to M*, there exist a unique local minimizer of the functional. For M < M*, the set of local minimizers is not compact in H-1, though they all achieve the same value of the functional.
引用
收藏
页码:173 / 211
页数:39
相关论文
共 8 条
  • [1] ARMANINI E, 1990, ANN MAT PUR APPL, V4, P131
  • [2] BUTTAZZO G, 1993, MATH NACHR, V173, P71
  • [3] COMTE M, IN PRESS J ANAL MATH
  • [4] Goldstine H. H., 1980, A History of the Calculus of Variations from the 17th through the 19th Century, Studies in the History of Mathematics and Physical Sciences
  • [5] Extremal points of a functional on the set of convex functions
    Lachand-Robert, T
    Peletier, MA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) : 1723 - 1727
  • [6] LACHANDROBERT T, IN PRESS ANN IHP
  • [7] LEGENDRE A.-M., 1786, MEM ACAD SCI PARIS, P7
  • [8] ROCKAFELLAR T., 1970, Convex Analysis