Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces

被引:114
作者
Wang, Fan [1 ]
Yang, Dachun [1 ]
Yang, Sibei [2 ]
机构
[1] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ Chin, Sch Math Sci, Beijing 100875, Peoples R China
[2] Lanzhou Univ, Gansu Key Lab Appl Math & Complex Syst, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Ball quasi-Banach function space; Hardy space; g-function; g(lambda)*-function; atom; Calderon-Zygmund operator; pseudo-differential operator; REAL-VARIABLE CHARACTERIZATIONS; MORREY SPACES; INEQUALITIES; BOUNDEDNESS; EXPONENTS;
D O I
10.1007/s00025-019-1149-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a ball quasi-Banach function space satisfying some minor assumptions. In this article, the authors establish the characterizations of H-X(R-n), the Hardy space associated with X, via the LittlewoodPaley g-functions and g(lambda)*-functions. Moreover, the authors obtain the boundedness of Calderon-Zygmund operators on H-X(R-n). For the local Hardy-type space h(X)(R-n) associated with X, the authors also obtain the boundedness of S-1,0(0)(R-n) pseudo-differential operators on h(X)(R-n) via first establishing the atomic characterization of h(X)(R-n). Furthermore, the characterizations of h(X)(R-n) by means of local molecules and local Littlewood-Paley functions are also given. The results obtained in this article have a wide range of generality and can be applied to the classical Hardy space, the weighted Hardy space, the Herz-Hardy space, the Lorentz-Hardy space, the Morrey-Hardy space, the variable Hardy space, the Orlicz-slice Hardy space and their local versions. Some special cases of these applications are even new and, particularly, in the case of the variable Hardy space, the g(lambda)*-function characterization obtained in this article improves the known results via widening the range of lambda.
引用
收藏
页数:58
相关论文
共 60 条
[1]   WEIGHTED NORM INEQUALITIES RELATING G-STAR-LAMBDA AND AREA FUNCTIONS [J].
AGUILERA, N ;
SEGOVIA, C .
STUDIA MATHEMATICA, 1977, 61 (03) :293-303
[2]   HP CONTINUITY PROPERTIES OF CALDERON-ZYGMUND-TYPE OPERATORS [J].
ALVAREZ, J ;
MILMAN, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 118 (01) :63-79
[3]  
ANDERSEN KF, 1980, STUD MATH, V69, P19
[4]  
[Anonymous], 1983, LECT NOTES MATH
[5]   Change of angle in tent spaces [J].
Auscher, Pascal .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) :297-301
[6]  
Bennett C., 1988, PURE APPL MATH, V129
[7]   Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent [J].
Cheung, Ka Luen ;
Ho, Kwok-Pun .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (01) :159-171
[8]  
Chiarenza F., 1988, REND MAT, V7, P273
[9]   SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS [J].
COIFMAN, RR ;
MEYER, Y ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) :304-335
[10]   Variable Hardy Spaces [J].
Cruz-Uribe, David ;
Wang, Li-An Daniel .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (02) :447-493