Paint Detection in Shortwave and Midwave Hyperspectral Using one Dimensional CNN and Guided Grad-CAM band selection

被引:1
作者
Kang, Byungjin [1 ]
Kim, Sungho [1 ]
Shin, Jungsub [2 ]
Kim, Sunho [2 ]
机构
[1] Yeungnam Univ, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[2] Agcy Def Dev, 34186 Mailbox 35, Daejeon, South Korea
来源
ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVII | 2021年 / 11727卷
基金
新加坡国家研究基金会;
关键词
MWIR; SWIR; hyperspectral; paint detection; band selection; CLASSIFICATION;
D O I
10.1117/12.2587813
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Short wave infrared (SWIR) is the reflected radiance in the 1-2.5 mu m range. Mid wave infrared (MWIR) is the radiated radiance in the 3-5 mu m range. This paper proposes a paint detection method using two infrared bands with different characteristics. Object detection is one of the issues in hyperspectral image (HSI). We use one dimensional convolution neural network (1D-CNN) and guided gradient-weighted class activation mapping (Guided Grad-CAM) for band selection. We make a 1D-CNN architecture and select bands using Guided Grad-CAM from well-trained 1D-CNN. Finally, paint is detected using selected bands. We use datasets included short wave infrared band (SWIR) and mid wave infrared band (MWIR).
引用
收藏
页数:6
相关论文
共 24 条
[1]  
Ahmad M., 2011, Int. J. Eng. Technol., V3, P606
[2]   Feature selection and classification of hyperspectral images, with support vector machines [J].
Archibald, Rick ;
Fann, George .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) :674-677
[3]   Methodology for hyperspectral band selection [J].
Bajcsy, P ;
Groves, P .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2004, 70 (07) :793-802
[4]   Advances in Hyperspectral Image Classification [J].
Camps-Valls, Gustavo ;
Tuia, Devis ;
Bruzzone, Lorenzo ;
Benediktsson, Jon Atli .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) :45-54
[5]   A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification [J].
Chang, CI ;
Du, Q ;
Sun, TL ;
Althouse, MLG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (06) :2631-2641
[6]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[7]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[8]   IMAGING SPECTROMETRY FOR EARTH REMOTE-SENSING [J].
GOETZ, AFH ;
VANE, G ;
SOLOMON, JE ;
ROCK, BN .
SCIENCE, 1985, 228 (4704) :1147-1153
[9]   Band, selection for hyperspectral image classification using mutual information [J].
Guo, Baofeng ;
Gunn, Steve R. ;
Damper, R. I. ;
Nelson, J. D. B. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (04) :522-526
[10]   Benefits of hyperspectral remote sensing for tracking plant invasions [J].
He, Kate S. ;
Rocchini, Duccio ;
Neteler, Markus ;
Nagendra, Harini .
DIVERSITY AND DISTRIBUTIONS, 2011, 17 (03) :381-392