DYNAMICS OF THE p-LAPLACIAN EQUATIONS WITH NONLINEAR DYNAMIC BOUNDARY CONDITIONS

被引:0
作者
Cheng, Xiyou [1 ,2 ]
Wei, Lei [3 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Key Lab Appl Math & Complex Syst, Lanzhou, Gansu, Peoples R China
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
关键词
p-Laplacian equation; boundary condition; asymptotic regularity; attractor; PARABOLIC EQUATIONS; GLOBAL ATTRACTORS; UNIFORM ATTRACTORS; EXISTENCE; BEHAVIOR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the long-time behavior of the p-Laplacian equation with nonlinear dynamic boundary conditions for both autonomous and non-autonomous cases. For the autonomous case, some asymptotic regularity of solutions is proved. For the non-autonomous case, we obtain the existence and structure of a compact uniform attractor in L-r1 (Omega) x L-r(Gamma) (r = min(r(1), r(2))).
引用
收藏
页数:15
相关论文
共 31 条
[1]  
Adams R.A., 2003, Sobolev Spaces
[2]   APPLICATION OF THE INVARIANCE PRINCIPLE TO REACTION-DIFFUSION EQUATIONS [J].
ALIKAKOS, ND .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (02) :201-225
[3]  
Babin A.V., 1992, Attractors of Evolution Equations
[4]   Asymptotic behaviour of non-linear parabolic equations with monotone principal part [J].
Carvalho, AN ;
Gentile, CB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 280 (02) :252-272
[5]  
Carvalho AN, 1999, B UNIONE MAT ITAL, V2B, P693
[6]   Uniform attractors for non-autonomous p-Laplacian equations [J].
Chen, Guang-xia ;
Zhong, Cheng-Kui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) :3349-3363
[7]  
Chepyzhov V.V., 2002, Amer. Math. Soc.
[8]  
Cholewa J., 2000, GLOBAL ATTRACTORS AB
[9]  
Chueshov I, 2007, DISCRETE CONT DYN-A, V18, P315
[10]  
Chueshov I, 2004, DIFFER INTEGRAL EQU, V17, P751