Fourier truncation method for the non-homogeneous time fractional backward heat conduction problem

被引:19
作者
Kokila, J. [1 ]
Nair, M. T. [2 ]
机构
[1] IIT Palakkad, Dept Math, Palakkad 678557, India
[2] IIT Madras, Dept Math, Chennai, Tamil Nadu, India
关键词
Inverse problems; ill-posed problems; regularization; truncation method; heat equation; fractional derivative; Mittag-Leffler function; BOUNDARY-VALUE-PROBLEMS; ANOMALOUS DIFFUSION; EQUATION; REGULARIZATION;
D O I
10.1080/17415977.2019.1580707
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is devoted to the problem of determining the initial data for the backward non-homogeneous time fractional heat conduction problem by the Fourier truncation method. The exact solution for the forward and backward fractional heat problems is expressed in terms of eigen function expansion and Mittag-Leffler function. Due to the instability of determining initial data, a regularized truncated solution is considered. Further, the stability estimate for the exact solution and the convergence estimates for the regularized solution using an a-priori choice rule and an a-posteriori choice rule are derived.
引用
收藏
页码:402 / 426
页数:25
相关论文
共 31 条
[1]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[2]   Nondiffusive transport in plasma turbulence: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[3]   Fractional diffusion in plasma turbulence [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICS OF PLASMAS, 2004, 11 (08) :3854-3864
[4]   Wright functions as scale-invariant solutions of the diffusion-wave equation [J].
Gorenflo, R ;
Luchko, Y ;
Mainardi, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :175-191
[5]   Fractional diffusion: probability distributions and random walk models [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Pagnini, G ;
Paradisi, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (1-2) :106-112
[6]   TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES [J].
Gorenflo, Rudolf ;
Luchko, Yuri ;
Yamamoto, Masahiro .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :799-820
[7]  
Isakov V., 2006, People v. Isakov
[8]  
Kilbas A., 2006, Theory and Applications of Fractional Differential Equations, V24, DOI DOI 10.1016/S0304-0208(06)80001-0
[9]   ANOMALOUS DIFFUSION IN BIOMOLECULAR SYSTEMS FROM THE PERSPECTIVE OF NON-EQUILIBRIUM STATISTICAL PHYSICS [J].
Kneller, Gerald .
ACTA PHYSICA POLONICA B, 2015, 46 (06) :1167-1199
[10]  
Kress R., 2014, Linear Integral Equations, V82, P323